期刊文献+

基于量子模糊聚类算法的复杂网络社团结构探测 被引量:1

Detecting the Community Structure in Complex Networks Based on Quantum Fuzzy Clustering Algorithm
下载PDF
导出
摘要 研究了复杂网络的社团结构特性,探讨了复杂网络的社团结构探测算法.针对现有算法中判断社团结构时的主观性问题,提出了量子模糊聚类算法,并将该算法用于复杂网络社团结构的探测.实验结果表明:该算法可以准确、有效地探测到网络中实际存在的社团结构. Research in this paper aims to find some novel approaches to detecting the community structures in complex networks.To reduce the subjectivity in the existing algorithms , we detect community structure in complex networks based on quantum fuzzy clustering analysis method .The experimental results show that this method can give satisfactory results .
作者 牛艳庆
出处 《中南民族大学学报(自然科学版)》 CAS 北大核心 2015年第3期123-125,共3页 Journal of South-Central University for Nationalities:Natural Science Edition
基金 国家自然科学基金资助项目(11226267) 深圳市发展基金资助项目(JCYJ20130401160028781)
关键词 复杂网络 社团结构 量子模糊聚类 complex networks community structure quantum fuzzy clustering
  • 相关文献

参考文献7

  • 1Newman M. The structure and function of complex networks [J]. SIAM Review, 2003, 45(2) : 167-256.
  • 2Horn D, Gottlieb A. Algorithm for data clustering in pattern recognition problems based on quantum mechanics [ J]. Physical Review Letters, 2002, 88 ( 1 ) : 1-4.
  • 3Horn D, Axel I. Novel clustering algorithm for microarray expression data in a truncated SVD space [ J ]. Bioinformatics, 2003, 19(9): 1110-1115.
  • 4Newman M. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6) : 066133.
  • 5Zachary W W. An information flow model for conflict and fission in small groups [ J ]. Journal of Anthropological Research, 1977, 33: 452-473.
  • 6Newman M. Detecting community structure in networks [ J ]. European Physical Journal B, 2004 (2) : 321-330.
  • 7Newman M, Girvan M. Finding and evaluating community structure in networks [ J ]. Physical Review E, 2004, 69 (2) : 026113.

同被引文献7

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部