期刊文献+

一种采用稀疏表示的快速空时自适应方法 被引量:1

Fast space-time adaptive processing method by using the sparse representation
下载PDF
导出
摘要 在非均匀杂波环境下,空时自适应处理的关键在于如何利用少量样本准确地估计杂波协方差矩阵.基于稀疏表示的杂波协方差矩阵估计方法,仅利用单个或少量样本即可达到较好的杂波协方差矩阵估计效果,明显地提高了空时自适应算法的收敛速度.该方法利用杂波谱的稀疏性,根据稀疏表示理论估计出杂波功率谱,进而估计出杂波协方差矩阵.然而,采用稀疏表示方法估计所得的杂波谱常出现伪峰,容易造成杂波协方差矩阵估计偏差,故利用杂波谱分布的特殊空时耦合性,采用杂波脊曲线拟合方法剔除杂波谱中的伪峰,有效地提高了杂波协方差矩阵估计精度.另外,这种算法还可以对载机飞行参数(载机速度,偏航角等)进行估计. One of the key problems of space-time adaptive processing(STAP)is how to estimate the clutter covariance matrix(CCM)accurately with a small number of samples when the clutter environment is heterogeneous.The CCM estimation methods based on sparse representation(CCM-SR)can achieve a good estimation performance with only one or a few samples,which significantly improves the convergence rate of the STAP.By using the sparsity characteristic of the clutter spectrum,the CCM-SR method estimates the clutter spectrum and yields a good estimation of the CCM.However,there are often many pseudo-peaks in the clutter spectrum estimated by the sparse representation(SR),which will cause a CCM estimation error.By exploiting the special relationship of the clutter ridge curve between space domain and Doppler domain,we can eliminate the pseudo-peaks in the clutter spectrum effectively via fitting the curve of the clutter ridge and improve the estimation accuracy of the CCM.In addition,a byproduct of our method is the estimation of the flying parameters(the velocity of the radar platform,the crab angle and so on).Experimental results show that the proposed method can improve the performance of conventional STAP based on sparse representation(STAP-SR)and obtain a good estimation of the flight parameters.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第5期55-62,共8页 Journal of Xidian University
基金 国家自然科学基金资助项目(61271293,61373177) 陕西省自然科学基金资助项目(2013JM8008)
关键词 稀疏表示 非均匀杂波 协方差矩阵估计 机载雷达 基于先验知识的空时自适应算法 参数估计 sparse representation heterogeneous clutter clutter covariance matrix estimation airborne radar knowledge-aided STAP(KA-STAP) parameters estimation
  • 相关文献

参考文献14

  • 1Melvin W L. A Stap Overview[J]. IEEE Transactions on Aerospace and Electronic Systems Magazine, 2004, 19(1): 19-35.
  • 2Aubry A, De Maio A, Pallotta L, et al. Covariance Matrix Estimation via Geometric Barycenters and Its Application to Radar Training Data Selection[J]. IET Radar, Sonar & Navigation, 2013, 7(6): 600-614.
  • 3Aubry A, DeMaio A, Farina A, et al. Knowledge-aided (Potentially Cognitive) Transmit Signal and Receive Filter Design in Signal-dependent Clutter[J]. IEEE Transactions on Aerospace and Electronic Systems, 2013, 49(1): 93-117.
  • 4Li X M, Feng D Z, Liu H W, et al. Two-dimensional Pulse-to-pulse Canceller of Ground Clutter in Airborne Radar[J]. IET Radar, Sonar & Navigation, 2009, 3(2): 133-143.
  • 5李晓明,冯大政,夏宇垠.基于重构协方差矩阵空时二维杂波抑制方法[J].系统工程与电子技术,2008,30(12):2366-2370. 被引量:4
  • 6Gurram P R, Goodman N A. Spectral-domain Covariance Estimation with a Priori Knowledge[J]. IEEE Transactions on Aerospace and Electronic Systems , 2006, 42(3): 1010-1020.
  • 7Melvin W L, Showman G A. An Approach to Knowledge-aided Covariance Estimation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1021-1042.
  • 8Capraro C T, Capraro G T, Bradaric I, et al. Implementing Digital Terrain Data in Knowledge-aided Space-time Adaptive Processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 42(3): 1080-1099.
  • 9Sun K, Meng H, Wang Y, et al. Direct Data Domain STAP Using Sparse Representation of Clutter Spectrum[J]. Signal Processing, 2011, 91(9): 2222-2236.
  • 10Sen S. OFDM Radar Space-time Adaptive Processing by Exploiting Spatio-temporal Sparsity[J]. IEEE Transactions on Signal Processing, 2013, 61(1): 118-130.

二级参考文献19

  • 1Peckham C D, Haimovich A M, Ayouv, T F, et al. Reduced rank STAP performance analysis[J]. IEEE Trans on AES, 2000, 36(2): 664-676.
  • 2Roman J R, Rangaswamy M, Davis D W, et al. Parametric adaptive matched filter for airborne radar application[J]. IEEE Trans on AES, 2000, 36(2): 677-692.
  • 3Wang H, Cai L. On adaptive spatial- temporal processing for airborne surveillance radar systems[J]. IEEE Trans on AES, 1994, 30(3): 660-670.
  • 4Bergin D J, Teixeira C, Techau P, et al. TAP with knowledge aided data pre-whitening[C] // proceedings of the 2004 IEEE conference, Philadelphia, PA, 2004: 289- 294.
  • 5Christopher T C, Gerard T C, Ivan B, et al. Implementing dig ital terrain data in knowledge-aided space-time adaptive processing[J]. IEEE Trans on AES, 2006, 42(3) : 1080 - 1099.
  • 6Farina A, Lombardo P, Pirri M. Nonqinear space-time processing for airborne early warning radar[J], IEE Proc. , Radar So nat Navig., 1998, 45(1): 9-18.
  • 7Lombardo P. Echoes covariance modeling for SAR along-track interferometry[C] // IEEE international sysm posium IGARSS ' 96, Lincoln, Nebraska, USA, 1996: 347-349.
  • 8Klemm R. Space-time adaptive processing: principles and applications[M]. London: IEE Press, 1998.
  • 9Chen F C, Fuhrmann D R, Kelly E J, et al. CFAR adaptive matched filter detector[J]. IEEE Trans on AES, 1992, 28 (1): 208-216.
  • 10Brennan L E, Reed I S. Theory of adaptive radar[J]. IEEE Trans on AES, 1973, 9(2): 237- 252.

共引文献23

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部