期刊文献+

一种参数自适应的SAR图像去噪方法 被引量:4

Parameter adaptive SAR image denoising method
下载PDF
导出
摘要 传统的合成孔径雷达(SAR)图像非局部均值去噪算法中,对于噪声块的相似性度量都简化为噪声点之间的相似性级联.在加性噪声模型下取得了很好的去噪效果.笔者将这种思想推广到了SAR图像的乘性噪声模型下,并且将其在最大似然权重估计的框架下对基于概率斑点(PPB)进行了改进.由于在PPB算法中参数的设置复杂,且不能自适应地获得最优效果,文中提出了基于粒子群优化的参数自适应的SAR图像去噪非局部算法.最后,在真实的SAR数据上,对该算法进行了实验测试,并与经典的PPB算法进行了实验对比.实验验证了该算法能更好地抑制噪声并且同时保持细节信息. In the traditional SAR image nonlocal means denoising algorithms,the patch similarity is measured by the accumulation of the pixel similarities,and a good denoising performance can be obtained for the additive noise model.This paper extends this idea to the multiplicative noise model for the SAR image,and improves the PPB(Probabilistic Patch-Based)algorithm under the weighted maximum likelihood estimation framework.Since the parameters setting in the PPB algorithm is complicated and it cannot adaptively get the best performance,this paper proposes a particle swarm optimization based parameter adaptive nonlocal means algorithm for SAR image denoising.Finally,experiments compared with the canonical PPB method on the real SAR image are carried out.Experiments demonstrate that the proposed method has a good performance in speckle reduction and details preservation.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第5期63-67,共5页 Journal of Xidian University
基金 国家自然科学基金资助项目(61372136)
关键词 图像去噪 合成孔径雷达 非局部均值 粒子群优化 image denoising synthetic aperture radar nonlocal means particle swarm optimization
  • 相关文献

参考文献15

  • 1Lee J S. Digital Image Enhancement and Noise Filtering by Use Of Local Statistics[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1980, 2(2): 165-168.
  • 2Lee J S, Wen J H, Ainsworth T L, et al. Improved Sigma Filter for Speckle Filtering of SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(1): 202-213.
  • 3Kuan D T, Sawchuk A A, Strand T C, et al. Adaptive Noise Smoothing Filter for Images with Signal-dependent Noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, 7(2): 165-177.
  • 4Frost V S, Stiles J A, Shanmugan K S, et al. A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1982, 4(2): 157-166.
  • 5Buades A, Coll B, Morel J M. A Review of Image Denoising Algorithms, with a New One[J]. Multiscale Modeling & Simulation, 2005, 4(2): 490-530.
  • 6Parrilli S, Poderico M, Angelino C V, et al. A Nonlocal SAR Image Denoising Algorithm Based on LLMMSE Wavelet Shrinkage[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(2): 606-616.
  • 7Deledalle C A, Denis L, Tupin F. Iterative Weighted Maximum Likelihood Denoising with Probabilistic Patch-based Weights[J]. IEEE Transactions on Image Processing, 2009, 18(12): 2661-2672.
  • 8Chen J, Chen Y, An W, et al. Nonlocal Filtering for Polarimetric Sar Data: a Pretest Approach[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5): 1744-1754.
  • 9Teuber T, Lang A. A New Similarity Measure for Nonlocal Filtering in the Presence of Multiplicative Noise[J]. Computational Statistics & Data Analysis, 2012, 56(12): 3821-3842.
  • 10Goodman J W. Some Fundamental Properties of Speckle[J]. Journal of the Optical Society of America, 1976, 66(11): 1145-1150.

二级参考文献13

  • 1张国英,沙芸.基于约束的粒子群聚类算法[J].计算机研究与发展,2007,44(z2):192-197. 被引量:2
  • 2刘靖明,韩丽川,侯立文.基于粒子群的K均值聚类算法[J].系统工程理论与实践,2005,25(6):54-58. 被引量:122
  • 3赵恒,杨万海,张高煜.模糊K-Harmonic Means聚类算法[J].西安电子科技大学学报,2005,32(4):603-606. 被引量:6
  • 4Han J W, Kamber M. Data Mining: Concepts and Techniques [M]. 2nd Ed. San Francisco: Morgan Kaufmann Publishers, 2001: 398-440.
  • 5Pena J M, Lozano J A, Larranaga P. An Empirical Comparison of Four Initialization Methods for the K-Means Algorithm[J]. Pattern Recognition Letters, 1999, 20(10): 1027-1040.
  • 6Frey B J, Dueck D. Clustering by Passing Messages between Data Points [J]. Science 2007, 315(5814) : 972-976.
  • 7Kennedy J, Eberhart R C. Particle Swarm Optimization [C]//Proc of IEEE Internal Con{erence on Neural Networks. Perth: IEEE, 1995: 1942-1948.
  • 8Rana S, Jasola S, Kumar R. A Review on Particle Swarm Optimization Algorithms and Their Applications to Data Clustering[J]. Artificial Intelligence Review, 2011, 35(3) : 211-222.
  • 9van der Merwe D W, Engelbrecht A P. Data Clustering Using Particle Swarmoptimization [C]//Proc of Evolutionary Computation. Cambella: IEEE, 2003: 215-220.
  • 10Esmin A A A, Pereira D L, de Araujo F P A. Study of Different Approach to Clustering Data by Using the Particle Swarm Optimization Algorithm [C]//IEEE World Congress On Computational Intelligence. Hawail: IEEE, 2008: 1817- 1822.

共引文献14

同被引文献27

引证文献4

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部