期刊文献+

利用二值描述符的实时目标跟踪算法 被引量:4

Real-time visual object tracking based on binary descriptors
下载PDF
导出
摘要 针对目标跟踪过程中的速率低和存储量大的问题,提出了一种新的利用二值描述符特征的快速稳定的目标跟踪算法.该算法首先在保持目标结构信息的情况下,通过寻找最优正交矩阵对样本进行旋转聚类,将样本从欧式空间投影到汉明空间,生成二值描述符.然后在粒子滤波采样的框架下,通过计算目标与候选样本的汉明距离确定目标跟踪位置.实验结果表明,当发生光照、姿态变化和快速移动时,该算法跟踪速度较快,并且能够实现稳定跟踪. Object tracking often has the problems of low rate and high storage.Therefore,a tracking algorithm based on binary descriptors is proposed.The algorithm retains the original construction information on the samples and projects the samples from Euclidean space to Hamming space in order to generate binary descriptors by searching the optimal orthogonal matrix for rotating cluster.Then under the frame of particle filtering,it is necessary to determine the tracking position by computing the hamming distance.Analysis and experiment show that the proposed tracking algorithm performs rapidly and favorably when the target objects undergo large illumination,pose changes and fast movement.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第5期168-174,共7页 Journal of Xidian University
基金 国家自然科学基金资助项目(61472442) 航空科学基金资助项目(20131996013)
关键词 目标跟踪 二值描述符 粒子滤波 汉明距离 object tracking binary descriptors particle filtering hamming distance
  • 相关文献

参考文献15

  • 1Li Xi, Hu W M, Shen C H, et al. A Survey of Appearance Models in Visual Object Tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 58-72.
  • 2李远征,卢朝阳,李静.一种基于多特征融合的视频目标跟踪方法[J].西安电子科技大学学报,2012,39(4):1-6. 被引量:15
  • 3孙浩,王程,王润生.局部不变特征综述[J].中国图象图形学报,2011,16(2):141-151. 被引量:35
  • 4高晶,毕笃彦,赵晓林.融合边缘片断与水平集分割的目标跟踪算法[J].西安电子科技大学学报,2011,38(6):146-151. 被引量:1
  • 5Lowe D G. Object Recognition from Local Scale-invariant Features[C]//Proceedings of the Seventh IEEE International Conference on Computer Vision. Piscataway: IEEE, 1999: 1150-1157.
  • 6Heinly J, Dunn E, Frahm J M. Comparative Evaluation of Binary Features[C]//Proceedings of the 12th European Conference on Computer Vision. Berlin: Springer, 2012: 759-773.
  • 7Calonder M, Lepetit V, Strecha C, et al. BRIEF: Binary Robust Independent Elementary Features[C]//Lecture Notes in Computer Science: 6314. Heidelberg: Springer Verlag, 2010: 778-792.
  • 8Rublee E, Rabaud V, Konolige K, et al. ORB: an Efficient Alternative to SIFT or SURF[C]//Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE, 2011: 2564-2571.
  • 9Trzcinski T, Christoudias M, Lepetit V, et al. Boosting Binary Keypoint Descriptors[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2013: 2874-2881.
  • 10Gong Y C, Lazebnik S. Iterative Quantization: a Procrustean Approach to Learning Binary Codes[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2011: 817-824.

二级参考文献95

  • 1辛云宏,杨万海.被动多站多目标的测量数据关联算法研究[J].宇航学报,2005,26(6):748-752. 被引量:24
  • 2Bar-Shalom Y.Multitarget-multisensor Tracking:Applications and Advances[M].Norwood:Artech House,1990.
  • 3Blackman S S.Multiple Hypotheses Tracking for Multiple Target Tracking[J].IEEE AES MAG,2004,19(1):5-18.
  • 4Mourad O,De Schutter J.Hybrid Fuzzy Probabilistic Data Association Filter and Joint Probabilistic Data Association Filter[J].Information Sciences,2002,142(1-4):195-226.
  • 5Liu P X,Meng M Q -H.Online Data-driven Fuzzy Clustering with Applications to Real-time Robotic Tracking[J].IEEE Trans on Fuzzy Systems,2004,12(4):516-523.
  • 6Cappe O,Godsill S J,Moulines E.An Overview of Existing Methods and Recent Advances in Sequential Monte Carlo[J].Proceedings of the IEEE,2007,95(5):899-924.
  • 7Li Liangqun,Ji Hongbing,Gao Xinbo.Maximum Entropy Fuzzy Clustering with Application to Real-time Target Tracking[J].Signal Processing,2006,86(11):3432-3447.
  • 8Ekman M,Sviestins E,Sjoberg L.Particle Filters for Tracking Closely Spaced Targets[C] //Proc of FUSION 2007 Conf.New York:Inst of Elec and Elec Eng Computer Society,2007:1-8.
  • 9van der Merwe R,Doucet A,de Freitas N,et al.The Unscented Particle Filter[R].Cambridge:Cambridge University Engineering Department,2000.
  • 10Moravec H. Towards automatic visual obstacle avoidance[ C ]// Proceedings of International Joint Conference on Artificial Intelligence. New York, USA : ACM Press, 1977 : 584.

共引文献53

同被引文献39

  • 1XU X, TIAN L, ZHOU J. OSRI: a rotationally invariant binary de- scriptor[ J]. IEEE Transactions on Image Processing, 2014, 23 (7) : 2983 - 2995.
  • 2REN S, CAO X, WEI Y, et al. Face alignment at 3000 fps via re- gressing local binary features[ C]// Proceedings of the 2014 IEEE Conference on Computer Vision and Pattem Recognition. Piscat- away: IEEE Press, 2014: 1685- 1692.
  • 3LU J, LIONG V, ZHOU X, et al. Learning compact binary face de- scriptor for face recognition[ J]. IEEE Transactions on Pattern Anal- ysis and Machine Intelligence, 2014, 99(1) : 1 - 16.
  • 4LI X, SHEN C H, DICK A, et al. Learning compact binary codes for visual tracking[ C]// Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2013:2419-2426.
  • 5AVIDAN S. Support vector tracking[ J]. IEEE Transactions on Pat- tern Analysis and Machine Intelligence, 2004, 26 ( 8 ) : 1064 - 1072.
  • 6GRABNER H, LEISTNER C, BISCHOF H. Semi-supervised online boosting for robust tracking[ C]// Proceedings of the ECCV 2008. Berlin: Springer-Verlag, 2008:234-247.
  • 7BABENKO B, YANG M, BELONGIE S. Robust object tracking with online multiple instance learning[ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33 (8) : 1619 - 1632.
  • 8HARE S, SAFFARI A, TORR P H S. Struck: structured output tracking with kernels[ C]//Proceedings of the 2011 IEEE Interna- tional Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2011:263 -270.
  • 9MESE M, VAIDYANATHAN P P. Recent advances in digital half- toning and inverse halftoning methods[ J]. IEEE Transactions on Circuits and Systems h Fundamental Theory and Applications, 2002, 49(6) : 790 -805.
  • 10WEN Z, HU Y, ZHU W. A novel classification method of halftone image via statistics matrices[ J]. IEEE Transactions on Image Pro- cessing, 2014, 23(11): 4724-4736.

引证文献4

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部