期刊文献+

一种AGMM配准的尺度自适应目标跟踪方法

Visual object tracking with the adaptive scale based on AGMM point sets matching
下载PDF
导出
摘要 针对视觉目标跟踪中目标尺度发生变化时容易发生跟踪失败的问题,提出基于不对称高斯混合模型配准的尺度自适应目标跟踪方法.不对称高斯混合模型配准把上一帧和当前帧图像的特征点集分别作为高斯混合模型高斯重心和数据点,并将特征信息与空间信息相融合;通过比较数据点与高斯混合模型高斯重心之间的相似程度,对两帧图像之间的点集进行配准,得到当前帧中可靠的特征点;点集的离散程度充分反映了目标尺度大小,通过仿射变换计算图像离散度比例变化,可以准确地估计出当前帧目标框的位置和尺度.实验表明,该算法对目标尺度变化具有较强的自适应性,并且在发生光照变化、复杂背景时,也可以达到很好的效果. A visual object tracking method with the adaptive scale based on AGMM(Asymmetrical Gauss Mixture Models)point sets matching is proposed aimed at adaptively following the object's scale changes,which often cause tracking failure.As the feature point set in the last frame is considered as the GMM centroids and the feature point set in the current frame represents the data respectively,AGMM fuses the feature information and spatial information;by comparing the similarity between data and GMM centroids,we match the point sets between two adjacent frames and obtain the reliable feature points in the current frame;the degree of dispersion between points in the point set accurately reflects the size of the object scale and by using affine transformation,the proportion of the two point sets is computed to estimate the position and scale of the bounding box in the current frame accurately and effectively.Experimental results demonstrate that the method is adaptive to scale change and has advantage in illumination variation and color similar target tracking.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第5期175-182,共8页 Journal of Xidian University
基金 国家自然科学基金资助项目(61202339) 博士后基金面上资金资助项目(2012M512144) 陕西省自然科学基金资助项目(2012JQ8034)
关键词 视觉跟踪 尺度自适应 不对称高斯混合模型配准 仿射变换 特征点集 visual tracking adaptive scale asymmetrical Gauss mixture models alignment affine transformation feature point set
  • 相关文献

参考文献17

  • 1Smeulders A W M, Chu D M, Cucchiara R, et al. Visual Tracking: an Experimental Survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(7): 1442-1468.
  • 2Zhong B, Yao H, Chen S, et al. Visual Tracking via Weakly Supervised Learning from Multiple Imperfect Oracles[J]. Pattern Recognition, 2014, 47(3): 1395-1410.
  • 3Li X, Hu W, Shen C, et al. A Survey of Appearance Models in Visual Object Tracking[J]. ACM Transactions on Intelligent Systems and Technology, 2013, 4(4): 58.
  • 4Liu H, Yuan M, Sun F, et al. Spatial Neighborhood-constrained Linear Coding for Visual Object Tracking[J]. IEEE Transactions on Industrial Informatics, 2014, 10(1): 469-480.
  • 5Collins R. Mean-shift Blob Tracking through Scale Space[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington: IEEE Computer Society, 2003: 234-240.
  • 6彭宁嵩,杨杰,刘志,张风超.Mean-Shift跟踪算法中核函数窗宽的自动选取[J].软件学报,2005,16(9):1542-1550. 被引量:165
  • 7Vojir T, Noskova J, Matas J. Robust Scale-Adaptive Mean-Shift for Tracking[C]//Lectures Notes in Computer Science: 7944. Heidelberg: Springer Verlag, 2013: 652-663.
  • 8Ross D, Lim J, Lin R S, et al. Incremental Learning for Robust Visual Tracking[J]. International Journal of Computer Vision, 2008, 77(1): 125-141.
  • 9Naik N, Patil S, Joshi M. A Scale Adaptive Tracker Using Hybrid Color Histogram Matching Scheme[C]//Proceedings of the IEEE International Conference on Emerging Trends in Engineering and Technology. Piscataway: IEEE Computer Society, 2009: 279-284.
  • 10Myronenko A, Song X B. Point-set Registration: Coherent Point Drift[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(12): 2262-2275.

二级参考文献10

  • 1[1]Fukanaga K, Hostetler LD. The estimation of the gradient of a density function, with applications in pattern recognition. IEEE Trans. on Information Theory, 1975,21(1):32-40.
  • 2[2]Cheng Y. Mean shift, mode seeking and clustering. IEEE Trans. on Pattern Analysis and Machine Intelligence, 1995,17(8):790-799.
  • 3[3]Comaniciu D, Ramesh V, Meer P. Real-Time tracking of non-rigid objects using mean shift. In: Werner B, ed. IEEE Int'l Proc. of the Computer Vision and Pattern Recognition, Vol 2. Stoughton: Printing House, 2000. 142-149.
  • 4[4]Yilmaz A, Shafique K, Shah M. Target tracking in airborne forward looking infrared imagery. Int'l Journal of Image and Vision Computing, 2003,21 (7):623-635.
  • 5[5]Bradski GR. Computer vision face tracking for use in a perceptual user interface In: Regina Spencer Sipple, ed. IEEE Workshop on Applications of Computer Vision. Stoughton: Printing House, 1998. 214-219.
  • 6[6]Comaniciu D, Ramesh V, Meer P. Kernel-Based object tracking. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003,25(5):564-575.
  • 7[7]Collins RT. Mean-Shift blob tracking through scale space. In: Danielle M, ed. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2003. 234-240.
  • 8[8]Olson CF. Maximum-Likelihood image matching. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2002,24(6):853-857.
  • 9[9]Hu W, Wang S, Lin RS, Levinson S. Tracking of object with SVM regression. In: Jacobs A, Baldwin T, eds. IEEE Int'l Conf. on Computer Vision and Pattern Recognition, Vol 2. Baltimore: Victor Graphics, 2001. 240-245.
  • 10[10]Mohammad GA. A fast globally optimal algorithm for template matching using low-resolution pruning. IEEE Trans. on Image Processing, 2001,10(4):626-533.

共引文献164

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部