期刊文献+

基于本体的国史知识检索平台构建研究 被引量:4

Construction of Knowledge Retrieval Platform Based on Historic Ontology of the People's Republic of China
原文传递
导出
摘要 [目的/意义]构建国史知识检索平台,提高用户获取国史知识的效率,促进国史宣传和教育。[方法/过程]提出基于本体的国史知识检索平台构建思路与总体框架,在构建国史本体知识库的基础上,采用Neo4j数据库作为RDF数据仓储,创建基于Solr的实例索引、三元组索引和词条索引,针对多种检索需求设计实现检索引擎的执行流程、检索式构造方法以及查询处理算法,并为国史知识展示设计可视化实现方式。[结果/结论]构建国史知识检索平台,提供实体检索、查询问答、关联检索、时序检索及语义资源浏览等检索与浏览服务。该平台框架及关键技术实现方案可为面向领域知识的深度检索服务提供重要参考。 [Purpose/significance ] This paper aims to build a historic knowledge retrieval platform, improve the effi- ciency access for users to history of the People's Republic of China, and promote its publicity and education. [ Method/ process ] It proposes the construction idea and framework of the knowledge retrieval platform based on historic ontology of the People's Republic of China. Based on the ontology knowledge base, this platform uses Neo4j database as data storage, creates three index based on Solr, including instance index, triple index and text item index. For various retrieval de- mands, the execution process of retrieval engine, construction method of retrieval expression, query processing algorithm and knowledge visualization are designed and implemented. [ Result/conclusion ] The knowledge retrieval platform has been constructed, which provides entity search, query answering, relevance search, temporal retrieval and semantic re- sources browsing services. Its framework and implement of key technologies can provide an important reference for depth retrieval service on other domain knowledge.
出处 《图书情报工作》 CSSCI 北大核心 2015年第16期119-128,共10页 Library and Information Service
基金 中国社会科学院哲学社会科学创新工程信息化项目"中华人民共和国史教育网"(项目编号:横1312)研究成果之一
关键词 本体 实体检索 查询问答关联检索 可视化 ontology entity search question answering relevance search visualization
  • 相关文献

参考文献12

  • 1Kngine[ EB/OL]. [ 2015 - 03 - 10 ]. http ://www. baike, com/wi- ki/Kngine.
  • 2WolframAlpha[ EB/OL ]. [ 2015 - 05 - 10 ] http ://baike. baidu. corrt/link? url = 7hCseBblipm9Xo0xOeMo7jVuCrgcUMWTO7F- yW71Ur9 YkjUw7_WmG3_i9 yeyiRAoRVCvNCPbD6JxzNfyJ4ET6_.
  • 3Singhal A. Introducing the Knowledge Graph: Things, Not Strings [ EB/OL ]. [ 2013 -04 - 10 ]. http ://googleblog. blogspot, co. uk/ 2012/05/introducing -knowledge-graph -things-not. html.
  • 4张阔.从搜索信息到搜索知识--技术架构[EB/OL].[2013-03-26].http://weibo.com/1870490225/zbzDwq5TF#_mdl435219297630.
  • 5王吴奋.大规模知识图谱技术[EB/OL].[2014-10-12].http://blog.sciencenet.cn/home.php/fgcfmt/home.php?rood=space&uid=1225851&do=blog&id=801901.
  • 6Tummarello G, Delbru R, Oren E. Sindice. com: Weaving the Open Linked Data[ C]//Proceedings of 6th International Semantic Web Conference. Berlin : Springer,2007 : 552 - 565.
  • 7Wang Haofen, Liu Qiaoling, Penin T, et al. Semplore: A scalable IR approach to search the Web of data [J]. Web Semantics: Sci- ence, Services and Agents on the World Wide Web, 2009, 7 (3) : 177 - 188.
  • 8Damljanovic D, Agatonovic M, Cunningham H. FREyA : An inter- active way of querying linked data using natural language [ C ]// Proceedings of ESWC 2011 Workshops Berlin: Springer, 2012 : 125 - 138.
  • 9Freitas A, Oliveira J G, O' Riain S, et al. Querying linked data u- sing semantic relatedness: A vocabulary independent approach [ C]//Proceedings of 16th International Conference Applications of Natural Language to Information Systems. Berlin: Springer, 2011: 40 -51.
  • 10Abacha A, Zweigenbaum P. MEANS: A medical question-answer- ing system combining NLP techniques and semantic Web technolo- gies [ J ]. Information Processing and Management, 2015, 51 ( 3 ) : 570 - 594.

二级参考文献19

  • 1董慧,余传明,杨宁,陈亮,徐国虎,张继东,彭翠萍.基于本体的数字图书馆检索模型研究(Ⅲ)——历史领域资源本体构建[J].情报学报,2006,25(5):564-574. 被引量:45
  • 2颜端武,岑咏华,毛平,成晓.领域知识本体的可视化检索研究[J].中国图书馆学报,2007,33(4):60-63. 被引量:11
  • 3Lehmann J, Schiippel J, Auer S. Discovering Unknown Connec- tions - the DBpedia Relationship Finder [ C ]. Proc. 1 st Confer- ence on Social Semantic Web ( CSSW 97 ), G1,2007:99-110.
  • 4Julius Volz, Christian Bizer, Martin Gaedke, Georgi Kobilarov.Silk - A Link Discovery Framework for the Web of Data [ C ]. LDOW ( Linked Data on the Web ) 2009, April 20,2009, Ma- drid, Spain.
  • 5Obey Liu. Relation Discovery on the DBpedia Semantic Web [ EB/OL ]. [ 2012 - 01 - 18 ]. http://ensiwiki, en- simag, fr/images/0/05/Db- pedia- relation - discovery - ar- ticle, pdf.
  • 6Benjamin Bengfort, Ranjana Sharma, Ritika Sahni, and Phani Tirupathi. Pathfinder: Complex Relation Discovery and Ontological Management Software for Generic Ontolo- gies or Web Based Triples [EB/OL. [2012-01 - 18 ] http ://obiwan. cs. ndsu. nodak, edu/- rsharrna/ AIProject. pdf.
  • 7Xiao Dong, Ying Ding, Huijun Wang, Bin Chert, David J Wild. Chem2Bio2RDF Dashboard: Ranking Semantic Associations in Systems Chemical Biology Space[ C]. FWCS( The Future of the Web for Collaborative Science)2010, April 26,2010, Raleigh, USA.
  • 8Qingzhao Zheng, Huajun Chen, Tong Yu, Gang Pan. Collabora- tive Semantic Association Discovery From linked Data [ C ]. IRI 2009,10-12 August 2009, Las Vegas, Nevada, USA.
  • 9Philipp Heim, Ste_en Lohmann, Timo Stegemann. Interactive Re- lationship Discovery via the Semantic Web.[EB/OL]. [ 2012- 08-10 ]. http ://www. vis. uni- stuttgart, de/ heimpp/assets/ files/Publikationen/id/eswcl 0 -heimLohmannStegemann. pdf.
  • 10Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lo- hmann,Timo Stegemann. RelFinder: Revealing Relationships in RDF Knowledge Bases [ EB/OL ]. [ 2012 - 08 - 10]. http:// www. uni-due, de/ s400268/ReIFinder-SAMT09, pdf.

共引文献11

同被引文献33

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部