期刊文献+

基于相关性度量的触觉步态特征优化

The haptic force feature optimization based criterion of correlation
下载PDF
导出
摘要 在现有动力学特征基础上,提出了基于相关性度量的触觉步态组合特征优化方法(CCFO)。采用数学形态学提取触觉步态区域特征,同时提取触觉步态的图像特征,包括校正后外接矩形长宽比和对比度、相关性、熵等特征;采用相关性度量准则优化得到动力学特征,通过分析图像特征的相关性保留最优图像特征,优化后特征线性叠加构成触觉步态特征集。实验数据采用ITCSH GaitⅡ步态数据库,计算各特征组内相关系数和变异系数,结果表明,各特征具有较好的稳定性,并在身份识别中验证了特征集的有效性,实验结果说明CCFO方法可以有效地减少特征数,提高识别率。 Based on the haptic force dynamics feature,a method of Correlation-basis Combination Feature Optimization(CCFO)is proposed.First,the regional features of haptic force are extracted using mathematical morphology.Meanwhile,image features are extracted,such as the improved ratio of length to width,the contrast,the correlation,and the entropy.Then,the haptic force dynamics feature is optimized by criterion of correlation,and the optimal haptic force image feature is kept through analyzing the correlation coefficient.Finally,the haptic force feature set is obtained by linear summation.The experimental data are taken from the ITCSH Gait II database.The stability of the features is studied by calculating the intraclass correlation coefficient and coefficient of variation.The results show that the CCFO method can effectively reduce the number of features and hence improve the recognition rate in identity recognition.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2015年第5期1608-1614,共7页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61172127 61201127) 高等学校博士学科点专项科研基金项目(20113401110006) 安徽大学青年科学研究基金项目(KJQN1107)
关键词 计算机应用 区域特征 外接矩形长宽比 纹理特征 相关性度量 computer application region feature ratio of length to width textural feature criterion of correlation
  • 相关文献

参考文献11

  • 1Xu S,Zhou X,Sun Y.A genetic algorithm-based feature selection method for human identification based on ground reaction force[C]∥Proc the 1st ACM/SIGEVO Summit on Genetic and Evolutionary Computation,Shanghai,2009:665-670.
  • 2Lemaire Edward D,Biswas Ajoy,Kofman Jonathan.Plantar pressure parameters for dynamic gait stability analysis[C]∥Proc Annual International Conference of the IEEE on Engineering in Medicine and Biology Society,New York,2006:4465-4468.
  • 3Surdilovic D,Jinyu Z,Bernhardt R.Gait phase and centre of pressure measuring system[C]∥Proc International Conference of the IEEE on Industrial Informatics,Germany,Berlin,2004:331-334.
  • 4Kerstin Bosch,Joachim Gerss,Dieter Rosenbaum.Preliminary normative values for foot loading parameters of the developing child[J].Gait&Posture,2007,26(2):238-247.
  • 5Gurney J K,Kersting U G,Rosenbaum D.Betweenday reliability of repeated plantar pressure distribution measurements in a normal population[J].Gait&Posture,2008,27(4):706-709.
  • 6Yan Song-hua,Zhang Kuan,Tan Gou-qing,et al.Effects of obesity on dynamic plantar pressure distribution in Chinese prepubescent children during walking[J].Gait&Posture,2013,37(1):37-42.
  • 7Rafael C G,Richard E W.Digital Image Processing[M].3rd ed.Beijing:Publishing House of Electromcs Industry,2010:801-861.
  • 8刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635. 被引量:430
  • 9薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 10Bartko J.The intraclass correlation coefficient as a measure of reliability[J].Psychological Reports,1966,19(1):3-11.

二级参考文献17

  • 1张志龙,李吉成,沈振康.基于局部沃尔什变换的纹理特征提取方法研究[J].信号处理,2005,21(6):589-596. 被引量:6
  • 2薄华,马缚龙,焦李成.图像纹理的灰度共生矩阵计算问题的分析[J].电子学报,2006,34(1):155-158. 被引量:203
  • 3陈洋,王润生.结合Gabor滤波器和ICA技术的纹理分类方法[J].电子学报,2007,35(2):299-303. 被引量:25
  • 4J A Modestino,J Zhang.A markov random field model based approach to image interpretation[J].IEEE Tran On Pattern Analysis and Machine Intelligence,1992,14(6):606-615.
  • 5N Kamath,K.Sunil Kumar,U B Desai.Joint segmentation and image interpretation using hidden Markov models[A].Proc of the Int Conf on Pattern Recognition[C].Brisbane,Australia,1998,2:1840-1842.
  • 6Belhadj Ziad,Bouhlel Nizar,Sevestre Ghalila Sylvie,Boussema Mohamed Rached.Heterogeneous SAR Texture Characterization By Means Of Markov Random Fields[A].IEEE 2000 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′2000)[C].Honolulu Hawaii,2000,2:579-581.
  • 7Rupert D Paget.Nonparametric Markov Random Field Models for Natural Texture Images[D].The University of Queensland,1999.
  • 8S C Liew,H Lim,L K Kwoh,G K Tay.Texture analysis of SAR images[A].IEEE 1995 International Geoscience and Remote Sensing Symposium Proceedings (IGARSS′1995)[C].Firenze,Italy,1995,2:1412-1414.
  • 9Robert M Haralick,K Shanmugam,Its′hak Dinstein.Texture features for image classification[J].IEEE Trans on Systems,Man and Cybernetics,1973,3(6):610-621.
  • 10Dutra LV,R Huber.Feature extraction and selection for ERS-1/2 InSAR classification[J].International Journal of Remote Sensing,1999,20(5):993-1016.

共引文献599

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部