期刊文献+

误差逆向传播神经网络模型对脑出血患者血肿体积扩大的预测作用

Predictive effect of back propagation neural network model on hematoma enlargement in patients with cerebral hemorrhage
下载PDF
导出
摘要 目的研究误差逆向传播(BP)神经网络模型对脑出血患者血肿扩大(HE)的预测结果。方法回顾性分析解放军第三○九医院于2011年1月至2014年12月连续入院并诊断为脑出血的128例患者的临床资料。应用Matlab 7.14软件实现BP神经网络模型对脑出血患者24 h内HE(HE≥6.0 ml和HE≥12.5 ml)的预测。计算模型的均方差(MSE)以及整体预测的准确度;绘制预测HE的受试者工作特征(ROC)曲线。结果 BP神经网络预测HE≥6.0 ml和HE≥12.5 ml时,训练集、校验集、测试集的MSE分别为0.061、0.143、0.052和0.023、0.057、0.065。对HE拟合最佳验证性能分别为:HE≥6.0 ml网络训练11次,误差值为0.224;HE≥12.5 ml网络训练20次,误差值为0.057。预测HE≥6.0 ml和HE≥12.5 ml的整体准确度分别为92.2%(118/128)、96.9%(124/128)。结论 BP神经网络模型对数据要求无特殊限制,能够较为准确地拟合脑出血HE模型。 Objective To study predicting results of the back propagation( BP) neural network model for hematoma enlargement( HE) in patients with intracerebral hemorrhage. Methods The clinical data of 128 patients with cerebral hemorrhage admitted to the 309 th hospital of People' s Liberation Army from January 2011 to December 2014 were analyzed retrospectively. The Matlab 7. 14 software was used to achieve BP neural network model for predicting hematoma enlargement within 24 hours in patients with intracerebral hemorrhage( HE ≥6. 0 ml and HE ≥12. 5 ml). The mean square error( MSE) of the model and the accuracy of the overall prediction were calculated. The receiver operation characteristic( ROC)curve was drawn for predicting HE. Results When the BP neural network predicted HE ≥6. 0 ml and HE ≥12. 5 ml,the mean square deviations of the training set,validation set,and test set were 0. 061,0. 143,0. 052 and 0. 023,0. 057,and 0. 065,respectively. The best fitting performance verification of hematoma enlargement was as follows: ≥ 6. 0 ml for network training 11 times and the error value0. 224; ≥12. 5 ml for network training 20 times,and the error value 0. 057. The overall accuracies of predicting HE ≥6. 0 ml and HE ≥12. 5 ml were 92. 2%( 118 /128) and 96. 9%( 124 /128) respectively.Conclusion The BP neural network model have no special limitation for data. It can accurately fit the hematoma expansion model of cerebral hemorrhage.
出处 《中国脑血管病杂志》 CAS CSCD 北大核心 2015年第10期505-510,共6页 Chinese Journal of Cerebrovascular Diseases
基金 解放军第三○九医院院课题(2014MS-009)资助
关键词 脑出血 误差逆向传播神经网络 血肿扩大 预测 Cerebral hemorrhage Back propagation neural network Hematoma enlargement Prediction
  • 相关文献

参考文献17

  • 1Tsai CF, Thomas B, Sudlow CL. Epidemiology of stroke and its subtypes in Chinese vs white populations:a systematic review[ J]. Neurology ,2013,81 ( 3 ) :264-272.
  • 2Davis SM, Broderick J, Hennerici M, et al. Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage [ J ]. Neurology, 2006, 66(8) :1175-1181.
  • 3Brouwers HB, Chang YC, Falcone GJ, et al. Predicting henmtoma expansion after primary intracerebral hemorrhage [J].JAMA Neurol,2014,71 (2) :158-164.
  • 4Barras CD, Tress BM, Christensen S, et al. Density and shape as CT predictors of intracerebral hemorrhage growth [J]. Stroke,2009,40(4) :1325-1331.
  • 5兰莉,高菡璐,乔冬菊,赵娜,周丹,李诚,梁薇,隋从兰.应用BP人工神经网络模型预测急性心梗死亡率与气象因素的关系[J].中国公共卫生管理,2012,28(5):642-644. 被引量:5
  • 6各类脑血管疾病诊断要点[J].中华神经科杂志,1996,29(6):379-380. 被引量:33022
  • 7Fujii Y,Tanaka R,Takeuchi S ,et al. Hematoma enlargement in spontaneous intracerebral hemorrhage [ J ]. J Neurosurg, 1994,80( 1 ) :51-57.
  • 8Kazui S, Minematsu K, Yamamoto H, et al. Predisposing factors to enlargement of spontaneous intracerebral hematoma [ J ]. Stroke, 1997,28 (12) :2370-2375.
  • 9Kothari RU, Brott T, Broderick JP, et al. The ABCs of measuring intracerebral hemorrhage volumes [ J ]. Stroke, 1996,27 (8) : 1304-1305.
  • 10杨宝华.基于Matlab的BP神经网络应用[J].电脑知识与技术,2008(7):124-125. 被引量:12

二级参考文献30

  • 1刘方,张金良,陆晨.我国气象因素与心脑血管疾病研究现状[J].气象科技,2004,32(6):425-428. 被引量:36
  • 2FouilletA,Gey G,Laurent F,et al.Excess mortality related to the August2003 heat wave in France[J].Int Arch Occup Environ Health,2006,80:16-24.
  • 3StafoiaM,Forastiere F,Agostini D,et al. Vulnerability to heat-relatedmortality:a multicity, population-based, case crossover analysis [J].Epidemiology, 2006,17:315-323.
  • 4MichelozziP,De Sario M,Accetta G,et al-Temperature and summermortality:geographical and temporal variations in four Italian cities [J].JEpidemiol Community Health, 2006,60 :417-423.
  • 5丛爽.面向MATLAB工具箱的神经网络理论与应用(第2版)[M].北京:中国科学技术大学出版社.2003.
  • 6飞思科技产品研发中心.神经网络理论与MATLAB实现[M].北京.2005.
  • 7Faria S, Sodano L, Gjata A et al. The first prevalence survey of nosocomial infections in the University Hospi- tal Centre Mother Teresa'of Tirana, Albania[ J ]. J Hosp Infect ,2007,65 ( 3 ) :244 - 250.
  • 8Eftekhar B, Mohammad K, Ardebili HE, et al. Compari- son of artificial neural network and logistic regression models for prediction of mortality in head trauma based on initial clinical data [ J ]. BMC Med Inform Decis Mak ,2005,5:3.
  • 9Xie DS, Xiong W, Xiang LL, et al. Point prevalence sur- veys of healthcare-associated infection in 13 hospitals in Hubei Province, China ,2007 - 2008 [ J ]. J Hosp Infect, 2010,76(2) : 150 - 155.
  • 10EI-Solh AA, Hsiao CB, Goodnough S, et al. Predicting active pulmonary tuberculosis using an artificial neural network [ J ]. Chest, 1999,116 (4) : 968 - 973.

共引文献33044

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部