期刊文献+

关于H-矩阵的预条件AOR迭代法的收敛性探讨

The Convergence Discussion of the AOR Precondition Iterative Methods for H-matrices
下载PDF
导出
摘要 利用矩阵迭代理论与比较定理,分析了线性方程组的系数矩阵为H-矩阵时,预条件后AOR迭代法的收敛性;并给出了当加速因子?不变时,松弛因子?的大小与收敛速度的关系;同时还给出了两个数值实例验证了主要的结论. This paper firstly presents the convergence analysis of AOR-type iterative method for solving linear systems with H-matrices by using matrix iterative analysis and comparison theorems; then gets the relations between the size of relaxation factor ? and the rate of convergence when the acceleration factor ? is constant. Finally, the author verifies his conclusions through two numerical examples.
作者 李斌
出处 《湖南理工学院学报(自然科学版)》 CAS 2015年第3期12-16,共5页 Journal of Hunan Institute of Science and Technology(Natural Sciences)
基金 湖南科技学院教学改革研究项目(湘科院教字[2014]14号)
关键词 预条件 AOR迭代法 GAUSS-SEIDEL迭代法 M-矩阵 precondition AOR-type iterative method Gauss-Seidel iterative method M-matrix
  • 相关文献

参考文献6

  • 1L.Wang, Y.Song. PreeonditionedAOR iterative methods for M-matrices[J]. J.Comput.Appl. Math. 2009, 226:114-124.
  • 2RICHARD S VARGA. Matrix iterative analysis[M]. Heidelberg. Spring-Verlag, 2000:89-121.
  • 3A.Berman, R.J. Plemmons. Nonnegative Matrices in the Mathematical Sciences[M]. Academic Press, New York, 1979, SIAM, Philadelphia, PA, 1994.
  • 4R.S.Varga. Matrix lterative Analysis[M]. Prentice-Hall, Englewood Cliffs, NJ, 1962; Springer Series in Computational Mathematics, vol. 27 Springer-Vedag, Berlin, 2000.
  • 5A. Frommer. D.B.Szyld, H-splitting and two-stage iterative methods[J]. Numer. Math. 1992, 63:345-356.
  • 6程云鹏矩阵论[M].西安:西北工业大学出版社,2004.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部