期刊文献+

基于张量正则分解的时频混叠信号欠定盲分离方法 被引量:4

Canonical decomposition approach for underdetermined blind separation of non-disjoint sources
原文传递
导出
摘要 针对时频同时混叠条件下的欠定盲源分离(UBSS)问题,提出了一种基于四阶累积量(FO)与张量正则分解相结合的算法。首先构建观测到的混合信号的四阶累积量,并利用高阶累积量的"半不变性"将其表示成四阶张量的形式,然后采用线性搜索迭代最小二乘算法对张量进行分解并获得混合矩阵的估计,最后根据估计出的混合矩阵,采用最小均方误差波束形成器算法,完成源信号的恢复。仿真结果表明该方法的有效性,与已有算法相比提高了信号盲分离的性能。 This paper proposes a method of underdetermined blind separation of non-disjoint sources(UBSS)based on fourthorder cumulant(FO)and tensor decomposition.By semi-invariance of high-order cumulant,the FO is presented as statistics of the observed signal as fourth-order tensor;hence the mixed matrix is estimated by tensor decomposition with line search alternating least square.Finally,with the estimated matrix,sources are recovered by minimum mean-squared error-based beamforming.Simulations illustrate the validity of the method and show that the proposed method outperforms the existing methods in performance significantly.
出处 《航空学报》 EI CAS CSCD 北大核心 2015年第10期3393-3400,共8页 Acta Aeronautica et Astronautica Sinica
基金 中央高校基本科研业务费专项资金(K5051302018)~~
关键词 盲源分离 欠定混合矩阵 时频混叠 四阶累积量 张量正则分解 blind source separation underdetermined mixtures non-disjoint source fourth-order cumulant tensor canonical decomposition
  • 相关文献

参考文献19

二级参考文献84

  • 1赵恒,杨万海,张高煜.模糊K-Harmonic Means聚类算法[J].西安电子科技大学学报,2005,32(4):603-606. 被引量:6
  • 2Aissa-EI-Bey, Linh-Trung N, and Abed-Meraim K, et al.. Underdetermined blind separation of nondisjoint sources in the time-frequency domain. IEEE Transactions on Signal Processing, 2007, 55(3): 897-907.
  • 3Delorme A, Sejnowski T, and Makeig S. Enhanced detection of artifacts in EEG data using high-order statistics and independent component analysis[J]. Neuroimage, 2007, 34(4) 1443-1449.
  • 4Bofill P and Zibulevsky M. Underdetermined blind source separation using sparse representations [J]. Signal Processing, 2001, 81(11): 2353-2362.
  • 5Donoho D L and Elad M. Optamally sparse representation in general dictionaries via ll-norm minimization[J]. Proceedings of the National Academy of Sciences of the USA, 2003, 100(4) 2197-2202.
  • 6Li Y Q, Cichoci A, and Amari S. Analysis of sparse representation and blind source separation[J]. Neural Computation, 2004, 16(6): 1193-1234.
  • 7Fevotte C and Godsill S. A Bayesian approach for blind separation of sparse sources[J]. IEEE Transactions on Audio Speech Language Process, 2006, 16(6): 2174-2188.
  • 8Araki S, Sawada H, and Mukai R. Underdetermined blind sparse source separation for arbitrarily arranged multiple sensors[J]. Signal Processing, 2007, 87(8): 1833-1847.
  • 9Hamada T, Nakano K, and Ichijo A. Wavelet-based underdetermined blind source separation of speech mixtures. IEEE ICCAS, Seoul, Korea, 2007: 2790-2794.
  • 10Peng D and Xiang Y. Underdetermined blind source separation based on relaxed sparsity condition of sources[J]. IEEE Transactions Signal Processing, 2009, 57(2): 809-814.

共引文献65

同被引文献90

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部