期刊文献+

笔划宽度变换直方图在车牌识别中的应用 被引量:1

Application of the Histograms of Stroke Width Transform in the License Plate Recognition
下载PDF
导出
摘要 对于很多车牌识别中使用的算法而言,主要存在两种车牌类型:深色文字浅色背景车牌和浅色文字深色背景车牌。这两种车牌主要是二值化结果不同,进而导致后续字符分割和识别处理的图像类型不同。因此,判断车牌的二值化类型对于车牌识别来说是基础且重要的工作。提出了一种基于字符笔划宽度变换直方图的二值化算法,根据正色图像和反色图像计算比较两者笔划宽度变换直方图的最大值来判别车牌类型。同时,根据判别结果还可以估计笔划宽度,为局部二值化算法的邻域窗口大小的选择提供依据。使用多样式的美国车牌作为实验对象,与其他算法相比,实验结果表明该算法具有更好准确率,但也有更高的复杂度。 For many algorithms used in the license plate recognition field,there are two categories of license plate: dark characters on the light background and light characters on the dark background. The main difference of them are the binarization results,and it will lead to different results of character segmentation and recognition.Therefore,the binarization type judgment is essential and important work for the license plate recognition. A method based on the histograms of the stroke width transform was propose for the problem. The proposed method judges the license plate type via comparing the maximization of the histograms of the stroke width transform of normal and inverted images. Besides,the stroke width can also be estimated by the judgment results,and it can be used for selecting the neighborhood window size of local binarization algorithms. The experimental results show that the proposed method is superior to others by using multi-style license plates in the United States,but the time complexity is high.
出处 《科学技术与工程》 北大核心 2015年第29期77-82,共6页 Science Technology and Engineering
基金 国家973项目(2009CB320804) 国家自然科学基金(61272304)资助
关键词 二值化车牌分类 笔划宽度变换 白底黑字 黑底白字 binarized license plate classification stroke width transform black character on white background white character on black background
  • 相关文献

参考文献10

  • 1Epshtein B, Ofek E, Wexler Y. Detecting text in natural scenes with stroke width transform. Proceedings of 2010 IEEE Conference on the Computer Vision and Pattern Recognition (CVPR), 2010: 2963 -2970.
  • 2Sun G, Li G, Xu L, et al. The location and recognition of Chinese vehicle license plates under complex backgrounds. Journal of Multi- media, 2009; 4(6): 442--449.
  • 3Kim M K. Adaptive thresholding technique for binarization of license plate images. Journal of the Optical Society of Korea, 2010;14 (4) : 368-375.
  • 4Wang F, Man L, Wang B, et al. Fuzzy-based algorithm for color rec- ognition of license plates. Pattern Recognition Letters, 2008 ; 29 (7) : 1007-1020.
  • 5Yang F, Ma Z, Xie M. A Novel Approach for License Plate Charac- ter Segmentation. Proceedings of 2006 1st IEEE Conference on the Industrial Electronics and Applications, Singapore, 2006 : 1-6.
  • 6Chang S L, Chen L S, Chung Y C, et al. Automatic license plate recognition. IEEE Transactions on Intelligent Transportation Systems, 2004 ; 5 ( 1 ) : 42-53.
  • 7Li G, Zeng R, Lin L. Research on Vehicle License Plate Location Based on Neural Networks. Proceedings of ICICIC '06 First Interna- tional Conference on the Innovative Computing, Information and Con- trol, Beijing, 2006:174-177.
  • 8Liang Z, Zhang S. A binarization approach for license plates with complex backgrounds and shadows. Journal of Computational Informa- tion Systems, 2013 ; 9 (19) : 7757-7764.
  • 9Canny J. A computational approach to edge detection. IEEE Trans- actions on Pattern Analysis and Machine Intelligence, 1986; 8( 6 ) : 679--698.
  • 10Gonzalez R C, Woods R E, Eddins S L. Digital image processing using Matlab. Prentice Hall, 2003.

同被引文献3

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部