期刊文献+

OFDM系统中最优导频序列的设计方案 被引量:3

Optimized Pilot Design Schemes in OFDM Systems
下载PDF
导出
摘要 在正交频分复用(OFDM)系统中,接收信号易受频率选择性衰落信道的影响产生失真,准确的信道估计变得必不可少。考虑到无线信道的内在稀疏性、压缩感知技术挖掘信道稀疏特征的有效性,研究了基于压缩感知技术的OFDM稀疏信道估计。针对导频位置影响信道估计性能的问题,提出了一种反馈型的导频优化算法,该算法基于离散傅里叶变换(DFT)子矩阵中各个列之间互相干性最小的原则,同时结合信道状态信息的反馈机制,实现了对导频序列的联合优化。仿真结果表明,与当前的随机优化算法、传统最小二乘信道估计相比,该优化方法有效降低干扰和噪声对信道估计的影响,从而改善了信道估计的性能。 In orthogonal frequency division multiplexing( OFDM) systems,the received signals are easily affected by the frequency selective fading channel,the accurate channel estimation is indispensable at receiver. Considering the inherent sparsity of the wireless channel and the effectiveness of the compressed sensing technology,this paper investigated the OFDM sparse channel estimation utilizing the compressed sensing technology. Aiming at the problem that the position of pilot sequence significantly affects the channel estimation performance,we propose a pilot optimization algorithm using the feedback mechanism,which is combining the criterion of minimizing the coherence between the columns of the Discrete Fourier Transform( DFT) sub-matrix and the feedback mechanism of the channel state information to jointly optimize the pilot sequence. Simulation results show that compared with the known stochastic optimization algorithms and the traditional least squares channel estimation,the proposed algorithm can effectively reduce the impact of the interference and noise on the channel estimation,which further improve the channel estimation performance.
出处 《科学技术与工程》 北大核心 2015年第29期148-152,共5页 Science Technology and Engineering
基金 国家自然科学基金资助项目(61271249)资助
关键词 OFDM 稀疏信道估计 压缩感知 反馈 导频设计 OFDM sparse channel estimation compres sed sensing feedback pilot design
  • 相关文献

参考文献9

  • 1Barhumi I, Leus G, Moonen M. Optimal training design for MIMO OFDM systems in mobile wireless channels. Signal Processing, IEEE Transactions on, 2003 ;51 (6) : 1615-1624.
  • 2Guo D, Shamai S, Verda S. Mutual information and minimum mean- square error in Gaussian channels. Information Theory, IEEE Trans- actions on, 2005 ;51 (4) : 1261-1282.
  • 3Wan F, Zhu W P, Swamy M N S. Semiblind sparse channel estima- tion for MIMO-OFDM systems. Vehicular Technology, IEEE Transac- tions on, 2011 ;60(6) : 2569-2582.
  • 4Shin C, Heath R W, Powers E J. Blind channel estimation for MI- MO-OFDM systems. Vehicular Technology, IEEE Transactions on, 2007 ;56(2) :670--685.
  • 5Chen J C, Wen C K, Ting P. An efficient pilot design scheme for sparse channel estimation in OFDM systems. Communications Let- ters, IEEE, 2013;17(7) :1352-1355.
  • 6Candes E J, Tao T. Near-optimal signal recovery from random projec- tions : universal encoding strategies.'? Information Theory, IEEE Trans- actions on, 2006 ;52(12) : 5406-5425.
  • 7Qi C H, Wu L N. Optimized pilot placement for sparse channel esti- mation in OFDM systems. IEEE Signal Processing Letters, IEEE Transactions on, 2011 ; 18 ( 12 ) : 749-752.
  • 8戚晨皓,吴乐南,朱鹏程.认知无线电中的稀疏信道估计与导频优化[J].电子与信息学报,2014,36(4):763-768. 被引量:15
  • 9龙恳,王慧.时变OFDM稀疏信道估计中最优导频选择[J].科学技术与工程,2014,22(2):119-121. 被引量:2

二级参考文献17

  • 1Tandur D, Duplicy J, Arshad K, et al.. Cognitive radio systems evaluation: measurement, modeling, and emulation approach[J]. IEEE Vehicular Technology Magazine, 2012, 7(2): 77-84.
  • 2Zhou X, Li G, and Sun G. Multiuser spectral precoding for OFDM-based cognitive radio systems[J]. IEEE Journal on Selected Areas in Communications, 2013, 31(3): 345-352.
  • 3Bajwa W, Haupt J, Sayeed A, et al.. Compressed channelsensing: a new approach to estimating sparse multipath channels[J]. Proceedings of the IEEE, 2010, 98(6): 1058 -1076.
  • 4Berger C, Wang Z, Huang J, et al.. Application of compressive sensing to sparse channel estimation [J]. IEEE Communications Magazine, 2010, 48(11): 164-174.
  • 5Qi C and Wu L. Application of compressed sensing to DRM channel estimation[C]. IEEE 73rd Vehicular Technology Conference (VTC-Spring 2011), Budapest, Hungary, 2011: 1-5.
  • 6Meng J, Yin W, Li Y, et al.. Compressive sensing basedhigh-resolution channel estimation for OFDM system [J]. IEEE Journal on Selected Topics in Signal Processing, 2012, 6(1): 15-25.
  • 7Hu D, He L, and Wang X. An efficient pilot design method for OFDM-based cognitive radio systems[J]. IEEE Transactions on Wireless Communications, 2011, 10(4): 1252 -1259.
  • 8Manasseh E, Ohno S, and Nakamoto M. Pilot design for noncontiguous spectrum usage in OFDM-based cognitive radio networks[C]. European Signal Processing Conference (EUSIPCO), Bucharest, Romania, 2012: 465-469.
  • 9Tong L, Sadler B, and Dong M. Pilot-assisted wireless transmissions: general model, design criteria, and signal processing[J]. IEEE Signal Processing Magzaine, 2004, 21(6): 12-25.
  • 10Candes E J and Tao T. Decoding by linear programming[J].IEEE Transactions on Information Theory, 2005, 51(12): 4203-4215.

共引文献15

同被引文献19

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部