期刊文献+

3-PPPS并联机翼调姿机构运动学标定 被引量:5

Kinematic calibration of 3-PPPS parallel wing posture adjustment mechanism
下载PDF
导出
摘要 为解决一种3-PPPS并联机翼调姿机构因制造、装配过程中存在的误差因素所引起的调姿精度不高的问题,考虑了调姿系统结构误差因素对调姿机构位姿精度的影响。采用空间矢量链建立机翼部件调姿位移逆解方程,通过微分机构运动学方程,得到包含39项误差源的调姿机构位姿误差与几何误差之间的映射方程。利用激光跟踪仪测量调姿机构测量机翼参考点位置和定位器各轴的实际驱动量。通过最小二乘迭代法辨识出定位器结构误差,修正定位器反向驱动位移求解参数。经过运动学标定实验后,调姿平台的位置最大误差由2.68 mm降为0.82mm,角度最大误差由0.481°降为0.167°,从而验证了标定方法的有效性。 To solve the low precision of 3-PPPS parallel wing posture adjustment mechanism's pose due to the exist- ence of the error in the assembly and manufacturing process, the influence of posture adjustment system's structure error on pose accuracy was considered with parallel kinematics calibration method. The inverse solution equation of wing posture adjustment was established through space displacement vector chain. The mapping function between the geometric error and the posture error which contained 39 error sources was obtained with differential mechanism of kinematics equation. The laser tracker system was used to measure appearance frame measurement reference point position and actual displacements. The structure error was identified by iterative linear least squares, and the struc- tural parameters in inverse displacement equation were amended. After the kinematics calibration experiment, the maximum position error of parallel platform reduced from 2.68mm to 0.82mm, and the maximum angle error re- duced from 0. 481° to 0. 167°, thus the effectiveness was verified.
出处 《计算机集成制造系统》 EI CSCD 北大核心 2015年第9期2378-2383,共6页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(51275234) 航空科学基金资助项目(20132252038)~~
关键词 机翼调姿 并联机构 误差模型 运动学标定 激光跟踪仪 wing posture adjustments parallel mechanisms error models kinematic calibrations laser tracker system
  • 相关文献

参考文献16

  • 1邹冀华,刘志存,范玉青.大型飞机部件数字化对接装配技术研究[J].计算机集成制造系统,2007,13(7):1367-1373. 被引量:96
  • 2梅中义,范玉青.基于激光跟踪定位的部件对接柔性装配技术[J].北京航空航天大学学报,2009,35(1):65-69. 被引量:36
  • 3郭志敏,蒋君侠,柯映林.一种精密三坐标POGO柱设计与精度研究[J].浙江大学学报(工学版),2009,43(9):1649-1654. 被引量:21
  • 4MERLET J P. Parallel robots[M]. Berlin, Germany: Spring- er-Verlag, 2006.
  • 5MAJARENA A C, SANTOLARIA J, SAMPER D, et al. An o- verview of kinematic and calibration models using internal/external sensors or constraints to improve the behavior of spatial parallel mechanisms[J]. Sensors,2010,10(11) : 10256-10297.
  • 6BESNARD S, KHALIL W. Calibration of parallel robots u-sing two inclinometers[C]//Proceedings of 1999 IEEE Inter- national Confrence of Robot Automation. Washington, D. C. , USA:IEEE, 1999,3 : 1758-1763.
  • 7ZHUANG H, YAN J, MASORY O. calibration of Stewart platforms and other parallel manipulators by minimizing in- verse kinematic residuals[J]. Journal of Robotic Systems, 1998,15(7) :395-405.
  • 8MENG G, TIEMIN L, WENSHENG Y. Calibration method and experiment of Stewart platform using a laser tracker[C]// Proceedings of IEEE International Conference on Systems, Man and Cybernetics. Washington, D. C. , USA: IEEE,2003: 2797-2802.
  • 9RENAUD P, ANDREFF N, LAVEST J M, et al. Simplifying the kinematic calibration of parallel mechanisms using vision- based metrology[J]. IEEE Transactions on Robotics, 2006,22 (1) :12-22.
  • 10KHALIL W, BESNARD S. Self calibration of Stewart-Gough parallel robots without extra sensors[J]. IEEE Transactions on Robotics and Automation, 1999,15 (6) : 1116-1121.

二级参考文献57

共引文献178

同被引文献35

引证文献5

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部