期刊文献+

RP-3航空煤油热辐射物性参数的透射法测量 被引量:2

Transmittance Method Measurement of Thermal Radiative Physical Parameters of Aviation Kerosene RP-3
原文传递
导出
摘要 建立了填充半透明液体光学腔光谱透射比的正问题计算模型,提出了一种基于填充液体光学腔的透射光谱反演其液态介质光学常数的IDTM模型,通过测量填充水光学腔的透射光谱并反演水的光学常数进行了模型验证.采用Bruke V70傅里叶红外光谱仪实验测量了填充RP-3航空煤油光学腔在波长2~15μm的透射光谱,基于新模型反演得到RP-3航空煤油光学常数,进而计算得到了其部分波段区域热辐射物性参数.研究结果表明:1)IDTM模型反演液体光学常数精度同MCDTM模型基本一致,且明显高于SODTM模型和SDTM模型.2)RP-3航空煤油在波长2~15μm范围透光性能较差,其中存在2.4μm、3.4μm、6.9μm、7.3μm和13.8μm等5个强吸收区域.3)RP-3航空煤油的光学常数和热辐射物性参数光谱选择性很强,在不同波段其值差距较大. The spectral transmittance radio calculation model of optical constants filled semitransparent liquid was developed.A novel inversion model of optical constants of liquid medium was developed based on spectral transmittance radio inversion calculation of optical cell filled with liquid fuel,which was validated and analyzed by measuring the optical constants of water.The measurements of transmittance spectrogram of optical cell filled with diesel fuel in the infrared wavelength 2~15 urn at normal incidence were investigated by Bruke V70 FTIR spectrometer.The optical constants and thermal radiative physical parameters of aviation kerosene RP-3 were achieved.The results show that,1) The optical constants calculation precision of the novel method(IDTM model) is similar with MCDTM model,which is higher than SODTM model and SDTM model.2)The transmittance capability of aviation kerosene RP-3 in the infrared wavelength 2~15 μm are weak,and there exist five absorption peaks,which are respectively 2.4[Am.3.4 μm,6.2 μm,7.3 μm and 13.8 μm.3) The spectral selectivity of optical constants and thermal radiative physical parameters of aviation kerosene RP-3 are stronger,whose values are urgently varied with different wavelengths.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2015年第10期2245-2249,共5页 Journal of Engineering Thermophysics
基金 中国博士后基金项目(No.2014M560246) 国家留学基金资助
关键词 RP-3航空煤油 热辐射物性参数 光学常数 aviation kerosene RP-3 thermal radiative physical parameters optical constants
  • 相关文献

参考文献15

  • 1孙凤贤,王银燕.辐射与对流耦合加热下正十二烷液滴的蒸发特性[J].航空动力学报,2008,23(11):2043-2048. 被引量:10
  • 2Adam E K, Jason M P, Jay B J, et al. Two-Wavelength Mid-IR Absorption Diagnostic for Simultaneous Measure- ment of Temperature and Hydrocarbon Fuel Concentra- tion [C]// Proceedings of the Combustion Institute-32nd International Symposium on Combustion. United King- dom: Elsevier Ltd, 2009:821-829.
  • 3Kettering C F, Sleator W W. Infrared Absorption Spectra of Certain Organic Compounds, Including Principle Types Present in Gasoline [J]. Journal of Applied Physics, 1933, 4(2): 39-49.
  • 4Hunter W H, Northey E H. The Absorption Spectra of a Series of Organic Molecular Compounds [J]. The Journal of Physical Chemistry, 1933, 37(7): 8"/5 887.
  • 5Jain S R, Walker S. Far-Infrared Absorption of Some Organic Liquids [J]. The Journal of Physical Chemistry, 1971, 75(19): 2942-2947.
  • 6Tuntomo A, Tien C L, Park S H. Optical Constants of Liquid Hydrocarbon Fuels [J]. Combustion Science and Technology, 1992, 84(1-6): 133-140.
  • 7Dombrovsky L A, Sazhin S S, Mikhalovsky S V, et al. Spectral Properties of Diesel Fuel Droplets [J]. Fuel, 2003, 82(1): 15-22.
  • 8Sazhin S S, Abdelghaffar W A, Sazhina E M, et al. Ra- diative Heating of Semi-Transparent Diesel Fuel Droplets [J]. Journal of Heat Transfer, 2004, 126(1): 105-109.
  • 9Jason M P, Jay B J, Ronald K H. Mid-infrared Absorp- tion Measurements of Liquid Hydrocarbon Fuels near 3.4 m [J]. Journal of Quantitative Spectroscopy gz Radiative Transfer, 2009, 110(18): 2135 2147.
  • 10李栋,夏新林,艾青.两种反演半透明液体光学常数的方法对比[J].哈尔滨工业大学学报,2012,44(9):73-77. 被引量:7

二级参考文献56

  • 1Sazhin S S. Advanced models of fuel droplet heating and evaporation[J]. Progress in Energy and Combuslion Science. 2006, 32:162 -214.
  • 2Zhang H T, Gogos G. Numerical research on a vaporizing fuel droplet in a forced convective environment[J].Int.J.Multiphase Flow, 2004, 30:181-198.
  • 3Kim H S, Sung N W. The effect of ambient pressure on the evaporation of a single droplet and a spray[J].Combustion and Flame, 2003. 135:261-270.
  • 4Bertoli C, Migliaccio M. A finite conductivity model for diesel spray evaporation computations[J].Int. J. Heal Fluid Flow. 1999. 20:552 -561.
  • 5Dombrovsky L A, Sazhin S S. A simplified non isothermal model for droplet heating andevaporation [J].Int. Comm. Heat Mass Transfer, 2003, 30:787 -796.
  • 6Dombrowky I. A, Sazhin S S. Sazhina E M, et al. Heating and evaporation of semi transparenl diesel fuel droplets in the presence of thermal radiation[J].Furl, 2001, 80:1535-1544.
  • 7Sazhin S S, Abdelgha W A, Sazhina E M. et al. Radiative heating of semi- transparent diesel fuel droplets[J].ASME J. Heat Transfer,2004. 126:105-109.
  • 8Abramzon B, Sazhin S S. Droplet vaporization model in the presence of thermal radiation[J].Int. J. Heat Mass Transfer, 2005, 48:1868- 1873.
  • 9XIA Xinlin, HUANG Yong, TAN Heping. Thermal e mission and absorption of a graded index semitransparent medium layer with specular surface and diffuse substratewall[J].J. Quant. Spectrosc. Radiat. Transfer, 2002, 74:235-248.
  • 10Marchese A J, Dryer F L. The effect of non-luminous thermal radiation in microgravity droplet combustion[J].Combustion Science ancl Technology, ]997, 124: 371-402.

共引文献16

同被引文献20

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部