期刊文献+

基于镜像激励的结构动力学系统的设计点激励 被引量:1

DESIGN-POINT EXCITATION OF STRUCTURAL DYNAMIC SYSTEMS BASED ON MIRROR-IMAGE EXCITATION
原文传递
导出
摘要 在随机振动及结构可靠性研究中,动力学系统的设计点激励有着不可替代的作用,但非线性动力学系统设计点激励的计算方法仍是当今研究者的焦点之一。该文利用振子自由振动响应的镜像激励,给出了高斯白噪声激励下非线性系统的设计点激励,并将其应用到首穿失效概率估计问题中,与原始的蒙特卡罗模拟相比较,两者体现了高度的一致性。为进一步说明该文方法的正确性,针对线性系统,利用解析方法获得设计点激励的准确值,利用镜像方法所得近似值,将其均应用到首穿失效概率的计算中,数值例子显示,两种方法所得设计点激励稍有不同,但在计算首穿失效概率时,展现出同样的有效性。 For structural dynamic systems, the design-point excitation plays an important role in structural reliability assessment and random vibration. The calculation method of design-point excitation is still an important research focus today. This paper suggests a procedure to obtain the design-point excitation of non-linear systems based on mirror-image excitation of the flee-vibration response. It is shown that the design-point excitation thus obtained is effective in estimating excursion probabilities in non-linear dynamic systems when compared with the Monte Carlo method. In order to further illustrate the effectiveness of the method, the paper gives a numerical example of linear dynamic systems. We obtain the design-point excitation based on both the analytical method and mirror-image excitation. It is shown that the two methods have the same effectiveness when estimating excursion probabilities.
机构地区 长安大学理学院
出处 《工程力学》 EI CSCD 北大核心 2015年第10期233-238,共6页 Engineering Mechanics
基金 国家自然科学基金项目(11202035 11402034) 长安大学中央高校基础科研基金项目(CHD2011JC019)
关键词 结构动力学 设计点激励 镜像激励 首穿失效概率 自由振动响应 structural dynamics design-point excitation mirror-image excitation first passage probability free-vibration response
  • 相关文献

参考文献16

  • 1Der Kiureghian A.The geometry of random vibrations and solutions by FORM and SORM[J].Probabilistic Engineering Mechanics,2000(15):81-90.
  • 2Au S K,Beck J L.First excursion probabilities for linear systems by very efficient importance sampling[J].Probabilistic Engineering Mechanics,2001,16:193-207.
  • 3Franchin P.Reliability of uncertain inelastic structures under earthquake excitation[J].Journal Engineering Mechanics,ASCE,2004,130(2):1-12.
  • 4Drenick R F.The critical excitation and nonlinear systems[J].Journal Applied Mechanics ASME,1977,44:333-336.
  • 5Iyengar R N,Manohar C S.Nonstationary random critical seismic excitations[J].Journal Engineering Mechanics,ASCE,1987,113(4):521-549.
  • 6Srinivasan M.Critical base excitations of structural systems[J].Journal Engineering Mechanics,ASCE,1991,117(6):1403-1422.
  • 7Takewaki I.Critical excitations for elastic-plastic structures via statistical equivalent linearization[J].Probability Engineering Mechanics,2002,17:73-84.
  • 8Heonsang Koo,Armen Der Kiureghian,Kazuya Fujimura.Design-point excitation for non-linear random vibrations[J].Probabilistic Engineering Mechanics,2005,20:136-147.
  • 9Au S K.Critical excitation of SDOF elasto-plastic systems[J].Journal of Sound Vibration,2006,296:714-733.
  • 10Crandall S H.Non-gaussian closure for random vibration of non-linear oscillators[J].International Journal Nonlinear Mechanics,1980,15(4/5):303-336.

二级参考文献18

  • 1Sun JQ, Hus CS. Cumulant-neglect closure method for non- linear systems under random excitation. Journal of applied Mechanics, 1987, 54:649-655.
  • 2Socha L, Soong TT. Linearization in analysis of nonlinear stochastic systems. Applied Mechanics Reviews, 1991, 44: 399-422.
  • 3Li Wei, Xu Wei. Stochastic optimal control of first pas- sage failure for coupled Duffing-Van der Pol system under Gaussian white noise excitations. Chaos Solitons & Frac- tal, 2005, 25(5): 1221-1228.
  • 4Li Wei, Xu Wei. First passage problem for strong nonlin- ear stochastic dynamical system. Chaos Solitons & Fractal, 2006, 28(2): 414-421.
  • 5Zhu WQ, Wu YJ. First-passage time of duffing oscilla- tor under combined harmonic and white-noise excitations. Nonlinear Dynamics, 2003, 32:291-305.
  • 6Newton NJ. Variance reduction for simulated diffusions. SIAM J Appl Math, 1994, 54(6): 1780-1805.
  • 7Girsanov IV. On transforming a certain class of stochastic processes by absolutely continuous substitution. Theory Probab Appl, 1960, 5:285-301.
  • 8Tanaka H. An importance sampling simulation for a stochastic fatigue crack growth model. In: Proceedings of the Eighth International Conference on Applications of statistics and Probability. Sydney, Australia, 1999.
  • 9Koo H, Der Kiureghian A, Fujimura K. Design-point exci- tation for non-linear random vibrations. Probabilistic En- gineering Mechanics, 2005, 20:136-147.
  • 10Oksendal B. Stochastic Differential Equations: An Intro- duction with Application. 5th edn. Berlin: Springer, 1998.

共引文献6

同被引文献8

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部