摘要
In order to understand the diversity and distribution of the bacterial community in the coastal sediment of the Bohai Bay, China, high-throughput barcoded pyrosequencing of the 16S rRNA gene was used. Metagenomic DNA was extracted from the sediment samples, and was sequenced using a 454 GS FLX Titanium system. At 97% similarity, the sequences were assigned to 22 884 operational taxonomic units (OTUs) which belonged to 41 phyla, 84 classes, 268 genera and 789 species. At the different taxonomic levels, both the dominants and their distribution varied significantly among the six coastal sediments. Proteobacteria was the first dominant phylum across all the six coastal sediments, representing 57.52%, 60.66%, 45.10%, 60.92%, 56.63% and 56.59%, respectively. Bacteroidetes was the second dominant phylum at Stas S1, S2 and S4, while Chloroflexi was the second dominant phylum at Stas S3, S5 and S6. At class level, γ-Proteobacteria was the first dominant class at Stas S1,S2, S4 andS6, while δ-Proteobacteria became the first dominant class at Stas S3 and S5. In addition, a large proportion of unclassified representatives have distributed at the different taxonomic levels. Canonical correspondence analysis (CCA) results indicated that the sediment texture, water depth (D), dissolved oxygen (DO), total nitrogen (TN) and nine EPA priority control polycyclic aromatic hydrocarbons (PAHs) including naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, fluoranthene, pyrene, benzo[a]anthracene and indeno[1,2,3-cd]pyrene were the important factors in regulating the bacterial community composition. Those results are very important to further understand the roles of bacterial community in the coastal biogeochemical cycles.
In order to understand the diversity and distribution of the bacterial community in the coastal sediment of the Bohai Bay, China, high-throughput barcoded pyrosequencing of the 16S rRNA gene was used. Metagenomic DNA was extracted from the sediment samples, and was sequenced using a 454 GS FLX Titanium system. At 97% similarity, the sequences were assigned to 22 884 operational taxonomic units (OTUs) which belonged to 41 phyla, 84 classes, 268 genera and 789 species. At the different taxonomic levels, both the dominants and their distribution varied significantly among the six coastal sediments. Proteobacteria was the first dominant phylum across all the six coastal sediments, representing 57.52%, 60.66%, 45.10%, 60.92%, 56.63% and 56.59%, respectively. Bacteroidetes was the second dominant phylum at Stas S1, S2 and S4, while Chloroflexi was the second dominant phylum at Stas S3, S5 and S6. At class level, γ-Proteobacteria was the first dominant class at Stas S1,S2, S4 andS6, while δ-Proteobacteria became the first dominant class at Stas S3 and S5. In addition, a large proportion of unclassified representatives have distributed at the different taxonomic levels. Canonical correspondence analysis (CCA) results indicated that the sediment texture, water depth (D), dissolved oxygen (DO), total nitrogen (TN) and nine EPA priority control polycyclic aromatic hydrocarbons (PAHs) including naphthalene, acenaphthylene, acenaphthene, fluorine, phenanthrene, fluoranthene, pyrene, benzo[a]anthracene and indeno[1,2,3-cd]pyrene were the important factors in regulating the bacterial community composition. Those results are very important to further understand the roles of bacterial community in the coastal biogeochemical cycles.
基金
The Central Basic Scientific Research Project in the Public Welfare for the Scientific Research Institutes under contract No.gyk5091301