期刊文献+

大尺寸Al-6Mg-0.3(Sc,Zr)合金铸锭铸态和均匀化态微观组织对比

Research on microstructures of as-cast and homogenized large-sized Al-6Mg-0. 3Sc,Zr alloy ingot
下载PDF
导出
摘要 采用高分辨电镜、透射电镜、扫描电镜、光学显微镜和显微硬度测试等方法,研究大尺寸Al-Mg-Sc-Zr铸锭均匀性及不同温度均匀化后组织性能的变化。结果表明,大尺寸铸锭铸态组织存在组织和性能不均匀,边部冷却速率高,晶粒小、析出相多、硬度高;中心存在镁偏析。均匀化热处理后,中心镁偏析部分消除,发生固溶强化;铸锭析出Al3(Sc,Zr)粒子起到析出强化作用。高于350℃析出粒子的直径大于临界直径,强化机制为Orowan绕过机制。析出粒子直径越大,强度增量△σOr值减小,温度升高而硬度下降。 The homogeneity of large-sized as-cast Al-Mg-Sc-Zr ingot and its microstructures after homogenization treatment at different temperatures were investigated by HRTEM,TEM,SEM,OM and micro-hardness measurements. The results show that microstructures and properties are inhomogeneous for the large-sized as-cast ingot,with smaller grain sizes,more precipitated phases,higher micro-hardness due to its higher cooling rate on the edge,and with Mg segregation in the center. After homogenization treatment,solid solution strengthens the alloy with Mg segregation partially disappearing,and Al3( Sc,Zr) particles precipitate from the ingot cast and strengthen the alloy by precipitation strengthening. When the temperature increases higher than 350℃,the particles' average diameter exceeds the threshold. As a result,the strengthening mechanism is Orowan bypass mechanism. As the particle diameter increases,the strength increment △σOrdecreases. While the micro-hardness decreases with the heating temperature increasing.
出处 《轻合金加工技术》 CAS 北大核心 2015年第10期24-29,共6页 Light Alloy Fabrication Technology
关键词 大尺寸Al-Mg-Sc-Zr合金铸锭 SC ZR 均匀化 Orowan强化机制 large-sized homogenization Sc Zr Orowan strengthening mechanism
  • 相关文献

参考文献17

二级参考文献67

  • 1赵卫涛,闫德胜,戎利建.变形Al-Mg-Sc-Zr合金退火组织的TEM观察[J].金属学报,2005,41(11):1150-1154. 被引量:18
  • 2聂波,尹志民,朱大鹏,姜锋,何振波.铝镁钪合金铸锭均匀化过程中的析出特性[J].稀有金属,2006,30(2):213-216. 被引量:9
  • 3[1]Drits M E, Ber L B, Bykov Y G, et al. Reerystallization of Al-Sc alloys[J]. Physics Metals Phys Metall(USSR), 1984, 57(9): 1172 - 1178.
  • 4[2]Drits M E, Dutkiewicz J, Toropova L S, et al. Effects of homogenizing heating on the properties of alloys in the Al-Sc and Al-Mg-Sc systems[J]. Cryst Res Technol, 1984, 19(10): 1325-1328.
  • 5[3]Torma T, Kovacs-Csetenyi E, Turmezey T, et al. Reduction of stibnite by hydrogen[J]. Journal of the Less-Common Metals, 1979, 64(1): 107- 114.
  • 6[4]Drits M E, Bykov Y G, Toropova L S. Effect of ScAl3 phase dispersity on hardening of Al-6. 3% Mg0.21% Sc alloy [J]. Metal Sci Heat Treatment(USSR), 1985, 27(3): 309-312.
  • 7[5]Toropova L S, Bykov Yu G, Lazorenko V, et al. Determination of elastic strain of the matrix due to particles of phase ScAl3 in an Al-Mg-Sc alloy[J]. Physics of Metals and Metallography, 1982, 54(1): 189-191.
  • 8[6]Novikov I I, Grushko O E. Dynamic recrystallization at superplastic deformation of duralumin with initial recrystallized structure[J]. Scripta Materialia, 2000,42(9) : 899 - 904.
  • 9[7]Davydov V G, Yelagin V I, Zakharov V V, et al. On prospects of application of new 01570 high-strength weldable Al-Mg-Sc alloy in aircraft industry[J]. Mater Sci Forum, 1996, 217(5) : 1841 - 1846
  • 10[8]Irving B. Why aren't airplanes welded? [J]. Weld J,1997, 76(1): 31-41.

共引文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部