期刊文献+

RPS27L基因作为辐射损伤标志物的研究

Study on RPS27L gene as a marker of radiation damage
下载PDF
导出
摘要 以人外周血为研究对象,研究照射后RPS27L基因的时间效应和剂量效应以及本底水平,探究其作为辐射损伤早期生物标志物的可行性。采集3名健康成人外周血,利用γ射线对其进行照射至吸收剂量分别为0、0.5、1、2、4、6和10 Gy,受照后37℃培养2、4、8、12和24 h,利用实时荧光定量PCR检测RPS27L基因的表达变化,并分析在37个健康人个体中的本底水平。结果显示,受照后的4、8、12和24 h RPS27L基因表达变化显著,而且具有很好的剂量依赖关系;在不同年龄和性别的个体中RPS27L本底水平相对稳定。因此,RPS27L基因具有作为新的辐射损伤标志物的潜力。 In order to explore RPS27L's possibility as a biomarker of radiation damage, we studied its time-response and dose-response after irradiation as well as its background level. Three healthy adults' peripheral blood was exposed to gamma-rays with 0, 0.5, 1, 2, 4, 6, and 10 Gy, separately and cultured for 2, 4, 8, 12, and 24 h respectively. RPS27L's expression change was detected by quantitative real-time PCR. We also analyzed its background level in 37 individuals. The results showed that RPS27L had a significant difference at 4, 8, 12, 24 h and a great dose-independent response. There was also a uniform background level of RPS27L among different age and gender. Thus, RPS27L is of great potential to be a new biomarker of radiation.
出处 《辐射研究与辐射工艺学报》 CAS CSCD 2015年第5期30-36,共7页 Journal of Radiation Research and Radiation Processing
基金 全军医学科技"十二五"科研项目(BWS11J018) 全军后勤科研重大项目(AWS14C014) 解放军307医院院创新基金(JS-2014-04)项目资助
关键词 核辐射 RPS27L 基因表达变化 实时荧光定量PCR 生物标志物 Nuclear radiation, RPS27L, Gene expression change, Quantitative real-time PCR, Biomarker
  • 相关文献

参考文献19

  • 1Suto Y, Hirai M, Akiyama M, et al. Biodosimetry of restoration workers for the Tokyo Electric Power Company (TEPCO) Fukushima Daiichi nuclear power station accident [J]. Health Physics, 2013, 105(4): 366-373. DOl: 1O.1097IHP.Ob013e3182995e42.
  • 2Ropolo M, Balia C, Roggieri P, et al. The micronucleus assay as a biological dosimeter in hospital workers exposed to low doses of ionizing radiation [J]. Mutation Research, 2012, 747(1): 7-13. DOl: 1O.1016/j.rnrgentox. 2012.02.014.
  • 3Amundson S A, Shahab S, Bittner M, et al. Identification of potential mRNA biomarkers in peripheral blood lymphocytes for human exposure to ionizing radiation [J]. Radiation Research, 2000, 154(3): 342-346.
  • 4Amundson S A, Bittner M, Meltzer P, et al. Biological indicators for the identification of ionizing radiation exposure in humans [J]. Expert Review of Molecular Diagnostics, 2001, 1(2): 211-219.
  • 5Amundson S A, Grace M B, McLeland C B, et al. Human in vivo radiation-induced biomarkers: gene expression changes in radiotherapy patients [J]. Cancer Research, 2004,64(18): 6368-6371.
  • 6Huang C J, Yang S H, Lee C L, et al. Ribosomal protein S27-like in colorectal cancer: a candidate for predicting prognoses [J]. PLoS One, 2013, 8(6): e67043. DOl: 10. 13711journal.pone.0067043.
  • 7Li J, Tan J, Zhuang L, et al. Ribosomal protein S27-like, a p53-inducible modulator of cell fate in response to genotoxic stress [J]. Cancer Research, 2007, 67(23): 11317-11326.
  • 8He H, Sun Y. Ribosomal protein S27L is a direct p53 target that regulates apoptosis [J]. Oncogene, 2007, 26(19): 2707-2716.
  • 9Knops K, Boldt S, Wolkenhauer 0, et al. Gene expression in low- and high-dose-irradiated human peripheral blood lymphocytes: possible applications for biodosimetry [J]. Radiation Research Society, 2012, 178(4): 304-312.
  • 10Badie C, Kabacik S, Balagurunathan Y, et al. Laboratory intercomparison of gene expression assays [J]. Radiation Research, 2013, 180(2): 138-148. DOl: 10.1667/ RR3236.1.

二级参考文献12

  • 1IAEA. Cytogenetic Dosimetry: Applications in Preparedness for and Response to Radiation Emergencies. Vienna: International Atomic Energy Agency, 2011 : 53- 63.
  • 2Benderitter M, Durand V, Caux C, et al. Clearance of radiation-induced apoptotic lymphocytes: Ex vivo studies and an in vitro co-culture model [J]. Radiation Research, 2002, 158: 464-474.
  • 3Chng W J, Tan G B, Kuperan P. Establishment of adult peripheral blood lymphocyte subset reference range for an Asian population by single-platform flow cytometry: Influence of age, sex, and race and comparison with other published studies [J]. Clinical and Diagnostic Laboratory Immunology, 2004, 11: 168-173.
  • 4Kabacik S, Mackay A, Tamber N, Manning G, et al. Gene expression following ionising radiation: identification of biomarkers for dose estimation and prediction of individual response [J]. International Journal of Radiation Biology, 2011, 87(2): 115-29.
  • 5Turtoi A, Sharan R N, Srivastava A, et al. Proteomic and genomic modulations induced by gamma-irradiation of human blood lymphocytes [J]. International Journal of Radiation Biology, 2010, 86(10): 888-904.
  • 6Budworth H, Snijders A M, Marchetti F, et al. DNA repair and cell cycle biomarkers of radiation exposure and inflammation stress in human blood [J]. PLoS One, 2012, 7(11): e48619, 1-12.
  • 7Yang H J 1, Kim N, Seong K M, et al. Investigation of radiation-induced transcriptome profile of radioresistant non-small cell lung cancer A549 cells using RNA-seq [J]. PLoS One, 2013, 8(3): e59319, 1-14.
  • 8Turtoi A, Schneeweiss F H. Effect of (211) at alpha-particle irradiation on expression of selected radiation responsive genes in human lymphocytes [J]. International Journal of Radiation Biology, 2009, 85(5): 403-412.
  • 9Saini D, Shelke S, Mani Vannan A, et al. Transcription profile of DNA damage response genes at G lymphocytes exposed to gamma radiation [J]. Molecular and Cellular Biochemistry, 2012, 364(1-2): 271-281.
  • 10Marchetti F, Coleman M A, Jones I. Candidate protein biodosimeters of human exposure to ionizing radiation [J]. International Journal of Radiation Biology, 2006, 82(9): 605-639.

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部