期刊文献+

面向交通信号的两层递阶控制解决方案 被引量:1

Two-layer hierarchical control solutions for traffic signal
下载PDF
导出
摘要 针对现有交通信号控制系统的诸多不足,提出了一种用于交通信号控制的两层递阶多Agent系统解决方案。通过将交通网络进行区域划分,利用底层Agent控制各交叉口,顶层Agent控制区域,从而实现两层递阶控制。底层Agent采用经典Q学习同步学习最优策略,顶层Agent利用Tile Coding非凡的连续空间处理能力,实现Q学习的动作值函数逼近方法。仿真实验结果表明,该分层递阶控制不但提高了交通信号控制系统效率,而且也为大规模应用提供了很好的可伸缩解决方案。 In view of the existing deficiencies of traffic signal control system, this paper proposes two-layer hierarchical multi-Agent system solution for traffic signal control. Through regional division of the traffic network, it uses the bottom level Agent to control the intersection, the top level Agent to control areas, so as to achieve the two-layer hierarchical con-trol. The bottom level Agent uses the classical Q-learning to synchronize the optimal strategy, the top level Agent utilizes the special continuous space processing ability of Tile Coding to achieve Q learning of action value function approxima-tion method. The simulation test results show that, the hierarchical control not only improves the efficiency of traffic signal control system, but also provides a good scalable solution for large-scale applications.
作者 戈军 周莲英
出处 《计算机工程与应用》 CSCD 北大核心 2015年第20期246-252,共7页 Computer Engineering and Applications
基金 江苏省宿迁市科技创新专项基金(No.Z201211) 宿迁学院重点科研基金(No.2013KY15)
关键词 多AGENT系统 递阶控制 交通信号 Q-学习 Tile Coding multi-Agent systems hierarchical control traffic signals Q-learning Tile Coding
  • 相关文献

参考文献21

  • 1Li H G,Li Z,Robert T,et al.A real-time transportation prediction system[J].Applied Intelligence,2013,39(4):793-804.
  • 2Chen B,Cheng H H.A review of the applications of agent technology in traffic and transportation systems[J].IEEE Transactions on Intelligent Transportation Systems,2010,11(2):485-497.
  • 3Chen B,Cheng H H,Palen J.Integrating mobile agent technology with multi-agent systems for distributed traffic detection and management systems[J].Transportation Research Part C:Emerging Technologies,2009,17(1):1-10.
  • 4Bazzan A.Opportunities for multiagent systems and multiagent reinforcement learning in traffic control[J].Autonomous Agents and Multi-Agent Systems,2009,18(3):342-375.
  • 5Roozemond D A.Using intelligent agents for pro-active,real-time urban intersection control[J].European Journal of Operational Research,2001,131(2):293-301.
  • 6Cai C Q,Yang Z S.Study on urban traffic management based on multi-agent system[C]//Proceedings of the 6th International Conference on Machine Learning and Cybernetics,Hong Kong,China:IEEE,2007:25-29.
  • 7Chen C,Li Z J.A hierarchical networked urban traffic signal control system based on multi-agent[C]//Proceedings of the 9th IEEE International Conference on Networking,Sensing and Control(ICNSC).New York:IEEE,2012:28-33.
  • 8Srinivasan D,Choy M C,Cheu R L.Neural networks for realtime traffic signal control[J].IEEE Transactions on Intelligent Transportation Systems,2006,7(3):261-272.
  • 9Gregoire P,Desjardins C,Laumonier J,et al.Urban traffic control based on learning agents[C]//Proceedings of Intelligent Transportation Systems Conference.New York:IEEE,2007:916-921.
  • 10Weiring M A.Multi-agent reinforcement learning for traffic light control[C]//Proceedings of the 7th International Conference on Machine Learning(ICML2000).San Francisco:Morgan Kaufmann Publishers Incorporation,2000:1151-1158.

二级参考文献17

  • 1Sutton R S,Barto A G.Reinforcement Learning:An Introduction[M].MIT Press,1998.
  • 2Busoniu L,Babuska R,DeSchutter B,et al.Reimforcement Leaming and Dynamic Programming Using Function Approximators[M].Boca Raton,FL:CRC Press,2010.
  • 3Grondman I,Busoniu L,et al.A Survey of Actor-Critic Reinforcement Learning:Standard and Natural Policy Gradients[J].IEEE Transactions on Systems,Man,and Cybernetics—Part C:Applications and Reviews,2012,42(6):1291-1307.
  • 4Barto A G,Sutton R S,Anderson C W.Neuronlike Adaptive Element That Can Solve Difficult Learning Control Problems[J].IEEE Trans Syst Man Cybem,1983,13:834-846.
  • 5Konda V R,Tsitsiklis J N.Actor-Critic Algorithms[C]// Proceedings of Advances in Neural Information Processing Systems.2000.
  • 6Rosenstein M T,Barto A G.Supervised Learning Combined with an Actor-Critic Architecture[J].CMPSCI Technical Report 02-41.October 2002.
  • 7Peters J,Schaal S.Natural actor-critic[J].Neurocomputing,2008,71(7-9):1180-1190.
  • 8Bathnagar S,Sutton R S,Ghavamzadeh M,et al.Natural actor critic algorithms[J].Automatica,2009,45 (11):2471-2482.
  • 9Vamvoudakis K G,Lewis F L.Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem[J].Automatica,2010,46(5):878-888.
  • 10Grondman I,Vaandrager M,Busoniu L,et al.Efficient Model Learning Methods for Actor-Critic Control[J].IEEE Transactions on Systems Man and Cybernetics Part B-Cybernetics,2012,42(3):591-602.

共引文献27

同被引文献10

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部