期刊文献+

改进的l_0范数LMS算法与分析 被引量:3

A Modified l_0_LMS Algorithm and Its Performance Analysis
原文传递
导出
摘要 提出一种改进的基于l0范数的最小均方(LMS)算法.采用误差的相关函数值调整权系数步长因子以及零吸引项,增强系统的抗噪声性能;并且引入一种修正的权系数步长因子更新方法,进而使系统具有较快的跟踪速度.对提出的算法进行理论分析,最后在不同信噪比下进行仿真验证并与已有的基于l0范数的LMS算法进行比较.理论分析结合仿真验证都表明新提出算法具有较快的跟踪速度和较强的抗噪声性能. A new variable step-size l0_least mean square( LMS) algorithm is proposed. A step size control method and the zero attraction items reweight method based on correlation function value of the error to increase the convergence speed,and reduce the steady-state misalignment. The anti-noise performance,convergence,tracking steady state error and misadjustment of this algorithm are discussed in theoretical analysis. Finally,the algorithm is compared with l0_LMS and Il0_LMS in different signal-to-noise ratio. Theoretical analysis combined with experimental simulation conclusion: the algorithm can achieve better tracking speed,lower steady state error and anti-noise performance.
作者 管四海 李智
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2015年第4期79-83,共5页 Journal of Beijing University of Posts and Telecommunications
基金 教育部博士基金项目(2011020311004) 国家自然科学基金项目(61074120)
关键词 变步长 基于l0范数的最小均方 收敛速度 抗噪声性能 variable step-size least mean square based on l0 norm tracking speed anti-noise
  • 相关文献

参考文献9

  • 1Wu Feiyun,Tong Feng.Non-uniform norm constraint LMS algorithm for sparse system identification [J].IEEE Communications Letters,2013,17(2): 385-388.
  • 2Kalouptsidis N,Mileounis G,Babadi B,et al.Adaptive algorithms for sparse system identification [J].Signal Processing,2011,91(8): 1910-1919.
  • 3Zhao Shengkui,Zhihong Man,Suiyang Khoo,et al.Variable step-size LMS algorithm with a quotient form [J].Signal processing,2009,89(1): 67-76.
  • 4田福庆,罗荣,李克玉,丁庆喜.基于改进的双曲正切函数变步长LMS算法[J].系统工程与电子技术,2012,34(9):1758-1763. 被引量:23
  • 5Costa,Márcio Holsbach,José Carlos Moreira Bermudez.A noise resilient variable step-size LMS algorithm [J].Signal Processing,2008,88(3): 733-748.
  • 6Gu Yuantao,Jin Jian,and Mei Shunliang.l0 norm constraint LMS algorithm for sparse system identification [J].IEEE Signal Processing Letters,2009,16(9): 774-777.
  • 7Su Guolong,Jin Jian,Gu Yuantao,et al.Performance analysis of l0 norm constraint least mean square algorithm [J].IEEE Transactions on Signal Processing,2012,60(5): 2223-2235.
  • 8曲庆,金坚,谷源涛.用于稀疏系统辨识的改进l_0-LMS算法[J].电子与信息学报,2011,33(3):604-609. 被引量:15
  • 9Jin Jian,Qu Qing,Gu Yuantao.Robust zero-point attraction least mean square algorithm on near sparse system identification [J].IET Signal Processing,2013,7(3): 210-218.

二级参考文献33

  • 1徐凯,纪红,乐光新.一种改进的变步长自适应滤波器LMS算法[J].电路与系统学报,2004,9(4):115-117. 被引量:35
  • 2罗小东,贾振红,王强.一种新的变步长LMS自适应滤波算法[J].电子学报,2006,34(6):1123-1126. 被引量:126
  • 3Diniz P. Adaptive Filtering Algorithms and Practical Implementation [M]. Third edition, New York: Springer, 2008: 77-126.
  • 4Abadi M and Husoy J. Mean-square performance of the family of adaptive filters with selective partial updates J. Signal Processing, 2008, 88(8): 2008 2018.
  • 5Godavarti M and Hero A O. Partial update LMS algorithms [J]. IEEE Transactions on Signal Processing, 2005, 53(7): 2382-2399.
  • 6Duttweiler D L. Proportionate normalized least-meansquares adaptation in echo cancellers [J]. IEEE Transactions on Speech and Audio Processing, 2000, 8(5): 508-518.
  • 7Deng H and Dyba R A. Partial update PNLMS algorithm for network echo cancellation [C]. Proceedings of ICASSP, Taipei China, 2009: 1329-1332.
  • 8Gu Y, Chen Y, and Tang K. Network echo canceller with active taps stochastic localization [C]. Proceedings of ISCIT, Beijing, 2005: 556-559.
  • 9Gu Y, Jin J, and Mei S. lo norm constraint LMS algorithm for sparse system identification [J]. IEEE Signal Processing Letters, 2009, 16(9): 774-777.
  • 10Li X, Fan Y, and Peng K. A variable step-size LMS adaptive filtering algorithm [C]. Proceedings of WiCOM, Beijing, 2009 2283-2286.

共引文献34

同被引文献19

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部