期刊文献+

Tight Relative 6-designs on Binary Hamming Association Schemes

Tight Relative 6-designs on Binary Hamming Association Schemes
下载PDF
导出
摘要 The concept of relative t-designs for Q-polynomial association schemes is due to Delsarte(Philips Res Rep 32: 373C411, 1997). In this paper, we discuss the Fisher type lower bounds of tight relative 6-designs very explicitly for binary Hamming association schemes H(n, 2). The concept of relative t-designs for Q-polynomial association schemes is due to Delsarte(Philips Res Rep 32: 373C411, 1997). In this paper, we discuss the Fisher type lower bounds of tight relative 6-designs very explicitly for binary Hamming association schemes H(n, 2).
出处 《Chinese Quarterly Journal of Mathematics》 2015年第3期389-407,共19页 数学季刊(英文版)
基金 Supported by the Natural Science Foundation of Hebei Province(A2013408009) Sup- ported by the Specialized Research Fund for the Doctoral Program of Higher Education(20121303110005) Supported by the Natural Science Foundation of Hebei Education Department(ZH2012082) Supported by the Foundation of Langfang Teachers University(LSBS201205)
关键词 ASSOCIATION SCHEME RELATIVE T-DESIGN Hamming ASSOCIATION SCHEME association scheme relative t-design Hamming association scheme
  • 相关文献

参考文献10

  • 1BANNAI E, BANNAI E. Remarks on the concepts of t-designs[J]. J Appl Math Comput, 2012, doi: 10. 1007/s12190-012-0544-1.
  • 2BANNAI E, ITO T. Algebraic Combinatorics I: Association Schemes[M]. Benjamin/Cummings: Menlo Park, Calfornia, 1984.
  • 3DELSARTE P. An Algebraic Approach to the Association Schemes of the Coding Theory[D]. Louvain Philips Res Rep Suppl: Delsarte P, 1973: 10.
  • 4DELSARTE P. Pairs of vectors in the space of an association scheme[J]. PhilipsRes Rep, 1977, 32: 373-411.
  • 5DELSARTE P, SEIDEL J J. Fisher type inequalities for Euclidean t-designs[J]. Linear Algebra Appl, 1989, 114/115: 213-230.
  • 6ENOMOTO H, ITO N, NODA R. Tight 4-designs[J]. Osaka J Math, 1979, 16- 39-43.
  • 7LI Zeng-ti, BANNAI Eiichi, BANNAI Etauko. Tight relative 2 and 4-designs on binary Hamming association schemes[J]. Graphs and Combinatorics, doi: 10.1007/s00373-012-1252-1.
  • 8MOLLER H M. Lower bounds for the number of nodes in cubature formulae[J]. Numerische Integration, 1979, 45: 221-230.
  • 9NEUMAIER A, SEIDEL J J. Discrete measures for spherical designs, eutactic stars and lattices[J]. Nederl Akad Wetensch Proc Ser 1988 50: 321-334.
  • 10NODA R. On orthogonal arrays of strength 4 achieving Rao's bound[J]. J Lond Math Soc, 1979, 19(3): 385-390.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部