期刊文献+

Effect of an electrostatic field on gas adsorption and diffusion in tectonic coal 被引量:4

Effect of an electrostatic field on gas adsorption and diffusion in tectonic coal
下载PDF
导出
摘要 The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electronegativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal–gas system conductivity in an electrostatic field. The quantity of gas adsorbed and DP result from competition between the depth of the adsorption potential well, the coal molecular electronegativity, and the Joule heating effect. DP peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity, DP, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the DP. The characteristics of adsorption, desorption, and diffusion of gas in tectonic coal are important for the prediction of coal and gas outbursts. Three types of coal samples, of which both metamorphic grade and degree of damage is different, were selected from Tongchun, Qilin, and Pingdingshan mines. Using a series of experiments in an electrostatic field, we analyzed the characteristics of gas adsorption and diffusion in tectonic coal. We found that gas adsorption in coal conforms to the Langmuir equation in an electrostatic field. Both the depth of the adsorption potential well and the coal molecular electroneg- ativity increases under the action of an electrostatic field. A Joule heating effect was caused by changing the coal-gas system conductivity in an electrostatic field. The quantity of gas adsorbed and AP result from competition between the depth of the adsorption potential well, the coal molecular electronegativ- ity, and the Joule heating effect. △P peaks when the three factors control behavior equally. Compared with anthracite, the impact of the electrostatic field on the gas diffusion capacity of middle and high rank coals is greater. Compared with the original coal, the gas adsorption quantity,△P, and the gas diffusion capacity of tectonic coal are greater in an electrostatic field. In addition, the smaller the particle size of tectonic coal, the larger the△P.
出处 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2015年第4期607-613,共7页 矿业科学技术学报(英文版)
基金 the National Natural Science Foundation of China(No.41272177) the Henan Polytechnic University Doctor Foundation(No.WS2013A11)
关键词 气体吸附 瓦斯扩散 构造煤 静电场 煤与瓦斯突出预测 焦耳热效应 扩散能力 解吸特性 Electrostatic field Tectonic coal Depth of adsorption potential well Joule heating effect Initial velocity of gas diffusion
  • 相关文献

参考文献11

二级参考文献164

共引文献399

同被引文献45

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部