期刊文献+

基于压缩感知的水下目标定位 被引量:4

Underwater Positioning Based on Compressed Sensing
下载PDF
导出
摘要 研究水声环境下匹配场定位中快拍数少和相干声源导致定位不准确问题。在水下目标定位的稀疏数学模型基础上,通过对测量矩阵中的列向量的模进行标准化,降低了由于距离原因对声源定位性能的影响;使用奇异值分解法对快拍数进行精简,降低了算法的时间复杂度;结合压缩感知理论的SOMP算法,实现高效的水下目标定位。仿真实例验证了该算法的有效性。 The problem caused by being short of snapshots and by coherent sources in the matched field localization is considered. The sparse mathematical model of underwater localization is constructed, and the adverse effects caused by long distance in source localization is reduced through normalization of the vectors in the measurement matrix; Time complexity is also reduced by the singular value decomposition to the snapshots matrix; combined with the SOMP algorithm in compressed sensing theory, high performance underwater localization is achieved. Simulation results demonstrate the efficiency of the proposed algorithm.
出处 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第10期127-132,共6页 Periodical of Ocean University of China
基金 中国科学院声场声信息国家重点实验室开放基金项目(SKLA201202)资助
关键词 匹配场 压缩感知 MMV SOMP matched field compressed sensing MMV SOMP
  • 相关文献

参考文献17

  • 1Baggeroer A B, Kuperman W A, Mikhalevsky P N. An overview of matched field methods in ocean acoustics[J].Oceanic Engineer- ing, 1993, 18(4): 401 424.
  • 2Tolstoy A. Matched Field Processing for Underwater Acoustic [M]. Singapore= World Scientific Publishing (70 Pte l.td, 1993.
  • 3Capon J. High-resolution frequency-wavenumber spectrum analysis[J].Proceedings of the IEEE, 1969, 57(8): 1408-1418.
  • 4Cox H, Zeskind R, Owen M. Robusl adaptive beamforming[J]. Acoustics, Speech and Signal Processing, IEEE Transactions on, 1987, 35(10): 1365-1376.
  • 5Donoho D L. Compressed sensing[J]. Information Theory, IEEE Transactions on, 2006, 52(4): 1289-1306.
  • 6Candes E J, Tao T. Decoding by linear programming[J]. Informa tion Theory, IEEE Transactions on, 2005, 51(12): 4203-4215.
  • 7Needell D, Vershynin R. Signal recovery from incomplete and in- accurate ts via regularized orthogonal matching pursuit [J]. Selected Topics in Signal Processing, IEEE Journal of, 2010, 4(2): 310 316.
  • 8Gorodnitsky I F, George J S, Rao B D. Neuromagnetic source ima- ging with FOCU~S: a recursive weighted minimum norm algorithm [J]. Eleetroencephalography and clinical Neurophysiology, 1995, 95(4): 231-251.
  • 9Chartrand R, Yin W. Iteratively reweighted algorithms for com- pressive sensing[C]// Lagvegas: Acoustics. Speech and Signal Processing, 2008. ICASSP 2008. IEEE International Conference on. IEEE, 2008: 3869-3872.
  • 10Cotter S F, Rao B D, Engan K, et al. Sparse solutions to linear inverse problems with multiple measurement veetors[J]. Signal Processing, IEEE Transactions on, 2005, 53(7): 2477-2488.

同被引文献35

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部