期刊文献+

基于超声导波微传感技术的油气管道在线监测技术 被引量:4

Ultrasonic guided wave microsensors for online monitoring of pipelines
下载PDF
导出
摘要 油气管道安全问题在各国能源领域都举足轻重,对管道的完整性进行实时监测从而实现本质安全是油气管道管理的重中之重。为此,首先总结了油气管道监测技术(内部监测法和外部监测法)的现状,分析了其技术缺陷:尚无法同时满足油气管道监测对灵敏度、可靠性、连续实时性等的需求。进而重点介绍了目前具备更多优点(可连续监测、精度高、定位准确、可监测管壁内部的腐蚀及裂缝、漏警和虚警概率低、土方作业量小及可实施性强等)的超声导波技术,但该技术还需要在增加有效距离、提高灵敏度、增强可编程度、微化设备、降低功耗和成本等方面加以提升,使其适于永久固定以便实现连续在线监测。最后提出了超声导波微传感技术,即利用芯片技术将超声导波设备高度集成,并将传感器和远程数据处理相结合,从而满足永久固定和连续实时在线监测的需求,提高了监测系统的集成度,降低了功耗,能较好地满足能源行业安全与环保的要求。该项新技术有可能成为未来油气管道监测最有效的解决方案。 Oil/gas pipeline safety is so essential in the global energy field that its focus should be on the real-time monitoring of the pipeline integrity to achieve its intrinsic safety. In view of this, we first summarized the state-of-the-art of oil/gas pipeline monitoring techniques, including internal and external monitoring methods, which failed to simultaneously meet the requirement of sensitivity, reliability, and real-time continuity. Then, we introduced the ultrasonic guided wave techniques as well as their advantages such as continuous monitoring with high-accuracy and accurate location, low alarm false and dismissal probability, relatively low quantity of earthwork, easy implementation, and its ability of monitoring the interior corrosion and fractures on the pipe walls, and so on. How- ever, to adapt for being permanently installed to realize the continual real time monitoring, these techniques need further improve- ment in terms of performance, size, power consumption, cost, etc. Finally, we presented the ultrasonic guided wave microsensors, i.e., miniaturized ultrasonic guided wave devices based on integrated circuits. Such microsensors combined with the remote data pro cessing are permanently installed to achieve the continuous real-time monitoring of pipelines. This technique with highly integration and low power consumption will become the most promising and effective solution to the pipeline monitoring in the near future.
作者 Alex Guo 韩钊
出处 《天然气工业》 EI CAS CSCD 北大核心 2015年第10期106-111,共6页 Natural Gas Industry
关键词 油气管道 实时监测 超声波 导波 传感器 芯片 Oil/gas pipeline Real-time monitoring Ultrasonic Guided wave Microsensor Chip
  • 相关文献

参考文献23

  • 1US Department of Transportation Pipeline and Hazardous Materials Safety Administration. Pipeline incident 20 Year trends[R].Washington DC: US DOT PHMSA, 2015.
  • 2Shaw D, Phillips M, Baker R, Munoz E, Rehman H, Gib- son C, et al. Leak detection study--DTPH56-11-D-000001[J]. Pipeline Hazardous Materials and Safety Administra- tion (PHMSA),2012,12(173) :1-281.
  • 3American Petroleum Institute. API ll30Computational pipeline monitoring [S]. Washington DC: API Technical Report, 2002.
  • 4American Petroleum Institute. API 1149 Pipeline variable uncertainties and their effects on leak detectability [S]. Washington DC : API Technical Report, 2015.
  • 5Penty R.Keystone XL pipe shuns infrared sensors to detect leaks[N]. Bloomberg News, 2015-02-11 (6).
  • 6Glisic B. Sensing solutions for assessing and monitoring pipeline systems[J]. Sensor Technologies for Civil Infra- structures: Applications in Structural Health Monitoring, 2014,56(2) :422-460.
  • 7Zhang J, Hoffman A, Murphy K, Lewis J, Twomey M. Review of pipeline leak detection technologies[C] // paper PSIG-1303 presented at the PSIG Annual Meeting, 16-19 April 2013, Prague, Czech Republic.
  • 8Gazis DC. Three-dimensional investigation of the propaga- tion of waves in hollow circular cylindersi.Analytical foun- dation[J].The Journal of the Acoustical Society of Ameri ca, 1959,31(5) : 568-573.DOI : http://dx, doi. org/10.1121/ 1.1907753.
  • 9Giurgiutiu V.Structural health monitoring with piezoelectric wafer active sensors [M]. 2na ed. San Diego: Academic Press,2014.
  • 10Lamb H. On waves in an elastic plate[J].Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 1917 : 93(648) 114-128.

二级参考文献21

  • 1艾娜,吴作伟,任江华.支持向量机与人工神经网络[J].山东理工大学学报(自然科学版),2005,19(5):45-49. 被引量:32
  • 2[1]Rose J L. Recent advances in guided wave NDE. IEEE Ultrasonics Symposium, 1995:761~770
  • 3[2]Alleyne D N, Cawley P. A two-dimensional Fourier transform method for the measurement of propagating multimode signals. J. Acoust. Soc. Am., 1991, 89(3):1 159~1 168
  • 4[3]Alleyne D N, Cawley P. Optimization of Lamb wave inspection techniques. NDT&E International, 1992, 25(1):11~22
  • 5[4]Lowe M J S, Alleyne D N, Cawley P. Defect detection in pipes using guided waves. Ultrasonics, 1998, 36(2):147~154
  • 6[5]Rose J L, Ditri J J, Pilarski A, et al. A guided wave inspection technique for nuclear steam generator tubing. NDT & E International, 1994, 27(6):307~310
  • 7[6]Gazis D C. Three dimensional investigation of the propagation of waves in hollow circular cylinders. Analytical Foundation. J. of the Acoustics Society of America, 1959, 31(5):568~573
  • 8[7]Alleyne D N, Cawley P. The excitation of lamb waves in pipes using dry coupled piezoelectric transducer. Journal of Nondestructive Evaluation, 1996, 15(1):11~20
  • 9[1]《国防科技工业无损检测人员资格鉴定与认证培训教材》编审委员会,编.超声检测[M].北京:机械工业出版社,2005:99-101.
  • 10[2]Trimborn N.The time of flight diffraction technique[EB/OL].NDT net[1997-09].http://www.ndt/article/tofd/trimborn/trimborn.htm.

共引文献67

同被引文献43

引证文献4

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部