期刊文献+

多元一次不定方程解的结构及其应用 被引量:1

The solution structure of multivariate linear indeterminate equation and its application
下载PDF
导出
摘要 初等数论是密码学研究的重要基础理论.引入多元一次不定方程的概念,利用多元一次不定方程解的存在性条件和二元一次不定方程一般解的结构,采用递推的数学归纳法,得到并证明了多元一次不定方程一般解及其特解的结构形式.进一步研究并给出了多元一次同余方程非负整数解的存在性条件,在此基础之上利用这个存在性条件对RSA公钥密码体制进行了密钥多元化的改进,论证了其加解密算法的正确性.最后通过例解说明改进后的RSA公钥密码体制较原密码体制更为安全可靠且易于实现. Elementary number theory was an important basic theory of cryptography investigation.In this paper,the concept of multivariate linear indeterminate equation was introduced.The general solution and particular solution structure formulas of multivariate linear indeterminate equation were obtained and proved by using its existence condition of solution and the general solution of binary linear indeterminate equation,which recurrence mathematical induction was employed.Furthermore the existence condition of nonnegative integral solution for the multivariate congruent linear equation was researched and presented.The result was applied to improve the RSA public key cryptosystem by multivariate keys class.The correctness of its encryption and decryption algorithm was argued.The modified RSA cryptosystem was more safer than the primitive ones and it could be carried out easily through an instantiation in the end.
作者 李滨
出处 《安徽大学学报(自然科学版)》 CAS 北大核心 2015年第5期6-12,共7页 Journal of Anhui University(Natural Science Edition)
基金 国家自然科学基金资助项目(61103114) 四川省科技厅科研基金资助项目(12ZB276)
关键词 不定方程 一般解 同余方程 RSA公钥密码体制 indeterminate equation general solution congruent equation RSA public key cryptosystem
  • 相关文献

参考文献8

  • 1Lander I. J. Equal sums of unlike powers[J]. Fibonacci Quart, 1990,28(2): 141-150.
  • 2Silvernan J H. Taxicabs and sums of two cubes[J].Amer Math Monthly, 1993,100(3):331-340.
  • 3Taylor R, Wiles A. Ring-theoretic properties of certain Hecke algebras[J].Ann of Math, 1995, 141 (4) 553-572.
  • 4李志刚,袁平之.一类不定方程组的解的个数[J].数学学报(中文版),2007,50(6):1349-1356. 被引量:1
  • 5刘燕妮,郭晓艳.一个丢番图方程及其它的整数解[J].数学学报(中文版),2010,53(5):853-856. 被引量:5
  • 6Tom M A. Introduction to analytic number theory[M]. New York:Springer-Verlag, 1976.
  • 7石玉,陈宝凤,李威,石东洋.非线性抛物方程的一个新混合元格式的超收敛分析[J].信阳师范学院学报(自然科学版),2014,27(3):328-331. 被引量:5
  • 8Rivest R L, Shamir A, Adleman L. A method for obtaining digital signatrues and public-key cryptosystems [J]. Communication of the ACM, 1978, 21(2):120-126.

二级参考文献34

  • 1侯春英,李宏,文宗川.半线性抛物方程的时空有限元方法[J].高校应用数学学报(A辑),2008,23(4):459-470. 被引量:6
  • 2李潜.非线性抛物型问题Galerkin逼近的整体超收敛性[J].高等学校计算数学学报,1994,16(3):288-292. 被引量:5
  • 3Kenichiro K., Comments and Topics on Smarandache Notions and Problems, Erhus University Press, USA, 1996.
  • 4Smarandache F., Only Problems, Not Solutions, Chicago: Xiquan Publishing House, 1993.
  • 5Tom M. A., Introduction to Analytic Number Theory, New York: Springer-Verlag, 1976.
  • 6Zhang W. P., etc., Elementary Number Theory, Xi'an: Shaanxi Normal University Press, 2007.
  • 7Pan C. D., Pan C. B., Elementary Proof of the Prime Number Theorem, Shanghai: Shanghai Science and Technology Press, 1988.
  • 8Thue A., Uber Annaherungswerte algebraischer Zahlen., J. Reine Angew. Math., 1909, 135: 284-305.
  • 9Siegel C. L., Uber einige Anwendungen diophantischer Approximationen, Abh. Preuss. Akad. Wiss., 1929, 1: 1-70.
  • 10Baker A., Davenport H., The equation 3x^2-2=y^2 and 8x^2-7=z^2, Quart J. Math. Oxford Ser., 1969, 20(2): 129-137.

共引文献8

同被引文献13

  • 1盖伊.数论中未解决的问题[M].张明尧,译.北京:科学出版社,2003.
  • 2DICKSON L E.History of theory of number[M].Washington:Washington Carnegie Institution,1919.
  • 3BRENT R P,COHEN G L,RIELE H J.Improved techniques for lower bounds for odd perfect numbers[J].Math Comp,1991,57:857-868.
  • 4MICHA E,RAO I.Odd perfect numbers are greater than 101500[J].Math Comp,2012,81(279):1869-1877.
  • 5NIEISEN P P.Odd perfect numbers have at least nine distinct prime factors[J].Math Comp,2007,76:2109-2120.
  • 6GOTO T,OHNO Y.Odd perfect numbers have a prime factor exceeding 108[J].Math Comp,2008,77:1859-1868.
  • 7PASCAL O,MICHA E,RAO I.On the number of prime factors of an odd perfect number[J].Math Comp,2013,83(289):2435-2439.
  • 8MCDANIEL W L,HAGIS P.Some results concerning nonexistence of odd perfect numbers of the formpαm2β[J].The J Fibonnacci Quart,1975,13(1):25-28.
  • 9IANNUCCI D E,SORLI R M.On the total number of prime factors of an odd perfect number[J].Math Comp,2003,72:2078-2084.
  • 10STARNI P.On some properties of the Euler’s factor of certain odd perfect numbers[J].J Number Theory,2006,116(1):483-486.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部