期刊文献+

P(VPBA-DMAEA) as a pH-sensitive nanovalve for mesoporous silica nanoparticles based controlled release 被引量:4

P(VPBA-DMAEA) as a pH-sensitive nanovalve for mesoporous silica nanoparticles based controlled release
原文传递
导出
摘要 A pH-sensitive controlled release system was proposed in this work, which consists of mesoporous silica nanoparticles(MSNs) functionalized on the pore outlets with poly(4-vinylphenybronic acid-co-2-(dimethylamino)ethyl acrylate) [P(VPBA-DMAEA)]. Four kinds of P(VPBA-DMAEA)-gated MSNs were synthesized and applied for the p H-sensitive controlled release. The results showed that P(VPBADMAEA) can work as a p H-sensitive nanovalve. The release behavior of the hybrid nanoparticles could be adjusted by changing the mole ratio of VPBA and DMAEA. With the increasing of the mole ratio of VPBA,the leakage of the entrapped molecules in the pores of MSNs could be decreased at neutral and alkaline conditions. By altering the p H of buffer from 4.0 to 8.0, the valve could be switched ‘‘on'' and ‘‘off''reversibly. In addition, cells viability results indicated that these P(VPBA-DMAEA)-gated MSNs had good biocompatibility. We believe that these MSNs based p H-sensitive controlled release system will provide a promising nanodevice for sited release of drug delivery. A pH-sensitive controlled release system was proposed in this work, which consists of mesoporous silica nanoparticles(MSNs) functionalized on the pore outlets with poly(4-vinylphenybronic acid-co-2-(dimethylamino)ethyl acrylate) [P(VPBA-DMAEA)]. Four kinds of P(VPBA-DMAEA)-gated MSNs were synthesized and applied for the p H-sensitive controlled release. The results showed that P(VPBADMAEA) can work as a p H-sensitive nanovalve. The release behavior of the hybrid nanoparticles could be adjusted by changing the mole ratio of VPBA and DMAEA. With the increasing of the mole ratio of VPBA,the leakage of the entrapped molecules in the pores of MSNs could be decreased at neutral and alkaline conditions. By altering the p H of buffer from 4.0 to 8.0, the valve could be switched ‘‘on'' and ‘‘off''reversibly. In addition, cells viability results indicated that these P(VPBA-DMAEA)-gated MSNs had good biocompatibility. We believe that these MSNs based p H-sensitive controlled release system will provide a promising nanodevice for sited release of drug delivery.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2015年第10期1203-1208,共6页 中国化学快报(英文版)
基金 supported by the National Natural Science Foundation of China (Nos. 21190040, 21175035, 21375034) National Basic Research Program of China (No. 2011CB911002) International Science & Technology Cooperation Program of China (No. 2010DFB30300)
关键词 pH-sensitive Mesoporous silica nanoparticles Nanovalve Polymer pH-sensitive Mesoporous silica nanoparticles Nanovalve Polymer
  • 相关文献

参考文献1

二级参考文献3

共引文献7

同被引文献25

引证文献4

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部