期刊文献+

老化试验条件下的IGBT失效机理分析 被引量:63

Analysis of IGBT Failure Mechanism Based on Ageing Experiments
下载PDF
导出
摘要 IGBT模块失效机理是变流器可靠性状态监测的基础,通过分析模块老化失效机理,得到饱和压降Uce补偿模型和结温Tj计算模型,建立IGBT模块功率循环实验平台,验证模块失效的物理过程和机理,得到IGBT模块在老化过程中电气和热参数的变化趋势,并建立热阻的退化模型,分析不同工作条件下对模块老化的影响。试验结果表明,模块在交变温度下焊接层失效是模块的主要失效方式,失效过程中其特征参数热阻满足参数退化模型,结温差越大模块越容易发生失效。通过IGBT模块的老化实验分析器件的老化机理,为变流器的状态监测和运行可靠性评估奠定一定基础,也为功率器件的可靠性设计提供决策支持。 Failure mechanism of IGBT modules is the foundation of the reliability condition of monitoring for converters. By analyzing the ageing failure mechanism of modules, the Uce compensation model and Tj computing model were obtained, and the power cycle experiment rig was established for IGBT modules. Firstly, the physical process and failure mechanism of IGBT were validated and the electrical and thermal parameters were obtained. In addition, according to the experimental data the model of thermal resistor degradation were found. Finally the effects on power modules were analyzed under different -test conditions. It is indicated that the solder fatigue is the main failure of the module during junction temperature cycling and the ageing velocity is proportional to the temperature difference. Therefore, according to the experimental data, the mechanism of ageing was discussed and analyzed which could make the foundation for the development of condition monitoring and the design of power device reliability.
出处 《中国电机工程学报》 EI CSCD 北大核心 2015年第20期5293-5300,共8页 Proceedings of the CSEE
基金 国家自然科学基金项目(51477019) 中央高校基本科研业务费专项资金资助(CDJZR12150074) 国家重点基础研究发展计划项目(973项目)(2012CB25200)~~
关键词 IGBT老化 失效机理 功率循环 结温计算 热阻监测 IGBT ageing IGBT failure power cycle junction temperature computing thermal monitoring
  • 相关文献

参考文献21

  • 1Wang H,Ma K,Blaabjerg F.Design for reliability of power electronic systems[C]//IECON 2012-38th Annual Conference on IEEE Industrial Electronics Society.Montreal:IEEE,2012:33-44.
  • 2Yang Shaoyong,Xiang Dawei,Bryant A,et al.Condition monitoring for device reliability in power electronic converters:A review[J].IEEE Transactions on Power Electronics,2010,25(11):2734-2752.
  • 3Hung Tuanyu,Liao Liling,Wang C C,et al.Life prediction of high-cycle fatigue in aluminum bonding wires under power cycling test[J].IEEE Transactions on Device and Materials Reliability,2014,14(1):484-492.
  • 4Mei Yunhui,Lian Jiaoyuan,Chen Xu,et al.Thermo-mechanical reliability of double-sided IGBT assembly bonded by sintered nanosilver[J].IEEE Transactions on Device and Materials Reliability,2014,14(1):194-202.
  • 5Li Y,Agyakwa P A,Johnson C M.Physics-of-failure lifetime prediction models for wire bond interconnects in power electronic modules[J].IEEE Transactions on Device and Materials Reliability,2013,13(1):9-17.
  • 6Darveaux,R.Effect of simulation methodology on solder joint crack growth correlation[C]// Electronic Components & Technology Conference.Las Vegas:IEEE,2000:1048-1058.
  • 7Jian Z,Changzhi L,Xiaoling Z,et al.FEM-based thermal analysis of IGBT.in Microelectronics and Electronics (PrimeAsia)[C]// 2010 Asia Pacific Conference on Postgraduate Research in Microelectronics and Electronics.Shanghai:IEEE,2010:321-324.
  • 8Khatir Z,Lefebvre S.Thermal analysis of power cycling effects on high power IGBT modules by the boundary element method[C]//Seventeenth Annual IEEE Symposium in Semiconductor Thermal Measurement and Management.San Jose:IEEE,2001:27-34.
  • 9李庆民,徐国政,钱家骊,张节容.大功率GTO等效传热模型的研究[J].中国电机工程学报,2000,20(1):19-22. 被引量:18
  • 10陈如清.采用新型粒子群算法的电力电子装置在线故障诊断方法[J].中国电机工程学报,2008,28(24):70-74. 被引量:15

二级参考文献39

  • 1李敏远,陈如清.基于改进谱分析法的大功率可控整流电路故障在线诊断系统[J].中国电机工程学报,2004,24(10):162-167. 被引量:15
  • 2彭文季,罗兴锜,赵道利.基于频谱法与径向基函数网络的水电机组振动故障诊断[J].中国电机工程学报,2006,26(9):155-158. 被引量:31
  • 3郑君里 杨行峻.人工神经网络[M].北京:高等教育出版社,1992..
  • 4郑君里,人工神经网络,1992年
  • 5Ma Hao, Lee Y S. Fault diagnosis of power electronic circuits based on neural network and waveform analysis[C]. The IEEE 1999 International Conference on Power Electronics and Drive Systems, Hong Kong, 1999.
  • 6Ku C C, Lee K Y. Diagonal recurrent network for dynamic system control[J]. IEEE Transaction on Neural Network, 1995, 6(1): 144-155.
  • 7Javier S, Ricardo P, Consuelo H. Fault diagnosis of rotating machinery based on auto-associative neural networks and wavelet transforms[J]. Journal of Sound and Vibration, 2007, 302(4-5): 981-999.
  • 8Francis E H, Shen L X. Fault diagnosis based on rough set theory [J]. Engineering ApplicationsofArtificial Intelligence, 2003, 16(1): 39-43.
  • 9Du Zhimin, Jin Xinqiao, Wu Lizhou. Fault detection and diagnosis based on improved PCA with JAA method in VAV systems [J]. Building andEnvironment, 2007, 42(9): 3221-3232.
  • 10Yang Junyan, Zhang Youyun, Zhu Yongsheng. Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension[J]. Mechanical Systems and Signal Processing, 2007, 21 (5): 2012-2024.

共引文献68

同被引文献344

引证文献63

二级引证文献400

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部