期刊文献+

Vassicek模型下的风险模型

Research on Risk Model Based on Vassicek Model
下载PDF
导出
摘要 风险模型里加入利率,是基于货币的时间价值.从长期来看,利率不是固定的,而是一个随机变量.考虑一种具有随机利率的风险模型.随机利率的未来取值依赖于利率当前值,且具有均值回复的特点,故对随机利率采取Vassicek模型.通过分析带有此类随机利率的风险模型,得到利息力的联合分布、总索赔额的期望和方差的表达式.依据这些结果,可以得到未来收益和风险的更精确估计,对保险公司产品的制定具有参考意义. Currency has time value,so the factor of interest rate is added into the model of claim amount. In the long run,interest cannot be considered as constant,but random variable. This paper puts emphasis on fluctuation of interest force. Current interest is influenced by prior period interest,moreover interest has a trait which is mean reversion. In this paper,the Vassicek model is selected to characterize random interest,then interest's distribution,expectation and variance of aggregative claims can be formulated. These results are not only helpful for making policy of actuary,but also significant for solving financial problems.
出处 《平顶山学院学报》 2015年第5期24-27,共4页 Journal of Pingdingshan University
基金 河北省商务发展重点研究项目(HBSW2013056)
关键词 随机利率 泊松过程 WIENER过程 Vassicek模型 random interest Poisson process wiener process Vassicek model
  • 相关文献

参考文献9

  • 1肖争艳,孙佳美.精算模型[M].北京:中国财政经济出版社,2010.
  • 2吴荣,杜勇宏.常利率下的更新风险模型[J].工程数学学报,2002,19(1):46-54. 被引量:30
  • 3Sundt B.Ruin estimates under interest force[J].Insurance:Mathematics and Economics,1995(16):7-12.
  • 4Cai J,Dickson D C M.On the expected discounted penalty function at ruin of surplus process with interest[J].Insurance:Mathematics and Economics,2002,30(3):389-404.
  • 5Hull J,White A.Pricing Interest Rate Derivative Securities[J].Review of Business,1985,58(2):135-157.
  • 6Beekman J A,Fuelling C P.Extra randomness in certain annuity models[J].Insurance:Mathematics and Economics,1992,10(4):275-287.
  • 7张奕,何文炯.随机利率下的风险模型[J].经济数学,2002,19(3):47-52. 被引量:1
  • 8陈绍刚,杨钰玲,李红霞.投保过程为Poisson过程的一类保险精算模型研究[J].金融理论与实践,2011(5):92-96. 被引量:1
  • 9徐景峰.金融数学[M].北京:中国财政经济出版社,2010.

二级参考文献24

  • 1梁来存.可变利率下寿险纯保费精算模型的改进[J].统计与决策,2007,23(2):21-22. 被引量:4
  • 2[1]Delbaen F,Haezendonck J. Classical risk theory in an economic environment[J]. Insurance:Mathematics and Economics,1987;6:85-116
  • 3[2]Dickson D C M,dos Reis A D E. Ruin problems and dual events[J]. Insurance:Mathematics and Economics,1994;14:51-60
  • 4[3]Dufresne F,Gerber H U. The surplusimmediately before and at ruin, and the amount of the claim causing ruin[J]. Insurance:Mathematics and Economics ,1988;7:193-199
  • 5[4]Gerber, Goovaerts,Kass. On the probability and severity of ruin[J]. ASTIN Bulletin 1987;17:151-163
  • 6[5]Sundt B,Teugels J L. Ruin estimates under interest force[J]. Insurance:Mathematics and Economics 1995;16:7-22
  • 7[6]张丽宏. Ruin theory under compound poisson model with constant interest force[D]. 博士论文,2001
  • 8[3]Grandell, J. , Mixed Poisson Processes, Chapman and Hall, London, 1997.
  • 9[4]Vyldrer, F. D. and M. J. Boovaerts, Recursive calculation of finite time ruin probabilities, Insurance:Math. and Econom. , 7(1998) :1-7.
  • 10[6]Ghislain, L. , Jose, G. , Moments of compound renewal sums with discounted claims, Insurance:Mathematics and Economics, 28(2001 ): 217-231.

共引文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部