期刊文献+

具有扩散及功能性反应的周期脉冲捕食-被捕食系统研究

The study on a periodic impulsive predator-prey system with diffusion and functional response
下载PDF
导出
摘要 主要研究了一类具有扩散及功能性反应的周期脉冲捕食-被捕食系统,系统由一个具有脉冲的反应扩散方程组描述.首先通过抛物偏微分方程的不变矩形理论获得了解的正性性质,然后利用比较原理研究系统解的有界性及持续生存性质;最后应用紧性准则讨论了系统周期解的存在唯一性及全局渐近稳定性. In this paper ,an impulsive predator‐prey system with diffusion and functional re‐sponse is investigated .The system is modeled by a reaction‐diffusion equation with periodic coefficients and impulses .The positive property of the solution is obtained by invariant rec‐tangle of parabolic partial differential equations .Further ,the comparison principle is applied to study the boundedness of the solution and the persistence of the system .Finally ,the condi‐tion to ensure the existence and stability of the periodic solution is obtained by a compactness criterion .
作者 李婧 窦家维
出处 《陕西科技大学学报(自然科学版)》 2015年第5期186-191,共6页 Journal of Shaanxi University of Science & Technology
基金 国家自然科学基金项目(61272435)
关键词 捕食-被捕食系统 功能性反应 脉冲收获 持续生存性 周期解 predator-prey system functional response impulsive harvest persistence periodic solution
  • 相关文献

参考文献16

  • 1肖燕妮,周义仓,唐三一.生物数学原理[M].西安:西安交通大学出版社,2008:41-50.
  • 2陈兰荪,孟建柱,焦建军.生物动力学[M].北京:科学出版社,2009.
  • 3Z. Amine, R. Ortega. A periodic predator-prey system [J]. Journal of Mathematical Analysis and Applications, 1994(185) :477-489.
  • 4卢琨.一类具有脉冲效应的捕食系统分析[J].陕西科技大学学报(自然科学版),2011,29(3):155-158. 被引量:1
  • 5Lakshmi Narayan Guin,Prashanta Kumar Mandal. Spatiot emporal dynamics of reaction-diffusion models of interact- ing populations [J]. Applied Mathematical Modelling, 2014,38(17-18) :4 417-4 427.
  • 6Murry J D. Mathematical biology[M]. New York: Spring- er-Verlag, 1989.
  • 7岳宗敏,白云霄,曹慧,蔡永丽.庇护效应下一类改进的Holling-Tanner反应扩散捕食模型的定性分析[J].陕西科技大学学报(自然科学版),2014,32(2):159-163. 被引量:1
  • 8M Fan, Q Wang,X Zou. Dynamics of a non-autono-mous ratio-dependent predator-prey system[J]. Proc. Roy. Soc. Edinburgh Sect. A, 2003,133 : 97-118.
  • 9T K Kar, S Misra, B Mukhopadhyay. A bio-economic model of a ratio-dependent predator-prey system and op- timal harvesting [J]. Journal of Applied Mathematics and Computing, 2006,9 (11) : 387-401.
  • 10R Arditi, L R Ginzburg. Coupling in predator-prey dynam ies:Ratio-dependenee[J]. Theret. Biol, 1989,139:1 123- 1 128.

二级参考文献32

  • 1贾建文,乔梅红.一类具有脉冲效应和Ⅲ类功能反应的捕食系统分析[J].生物数学学报,2008,23(2):279-288. 被引量:8
  • 2张芷芬.微分方程定性理论[M].北京:科学出版社,1986.3-60.
  • 3CHEN Fengde. Permance and global attractivity of a discrete multispecies Lotka-Volterra competition predator-prey systems [J]. Appl. Math. Comput., 1991, 59: 804-814.
  • 4FAN Meng, WANG Qian. Periodic solutions of a class of nonautonomous discrete time semi-ratio-dependent predator-prey systems [J]. Discrete Contin. Dyn. Syst. Ser. B, 2004, 4(3): 563-574.
  • 5FAN Meng, WANG Ke. Periodic solutions of a discrete time nonautonomous ratio-dependent predator-prey system [J]. Math. Comput. Modelling, 2002, 35(9-10): 951-961.
  • 6DAI Binxiang, ZOU Jiezhong. Periodic solutions of a discrete-time nonautonomous predator-prey system with the Beddington-DeAngelis functional response [J]. J. Appl. Math. Comput., 2007, 24(1-2): 127-139.
  • 7HUO Haifeng, LI Wantong. Stable periodic solution of the discrete periodic Leslie-Gower predator-prey model [J]. Math. Comput. Modelling, 2004, 40(3-4): 261-269.
  • 8YANG Xitao. Uniform persistence and periodic solutions for a discrete predator-prey system with delays [J]. J. Math. Anal. Appl., 2006, 318(i): 161-177.
  • 9FAN Yonghong, LI Wantong. Permanence for a delayed discrete ratio-dependent predator-prey system with Holling type functional response [J]. J. Math. Anal. Appl., 2004, 9.99(2): 357-374.
  • 10WANG Qian, FAN Meng, WANG Ke. Dynamics of a class of nonautonornous semi-ratio-dependent predatorprey systems with functional responses JONES B. On a class of singular integrals [J]. Amer. J. Math., 1964, 86: 441-462. J. Math. Anal. Appl., 2003, 278(2): 443-471.

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部