期刊文献+

基于SCDAP/RELAP5耦合堆腔注水的非能动压水堆熔融池冷却分析

Analysis on Molten Pool Cooling Coupled with Cavity Flooding Based on SCDAP/RELAP5 Code for Passive PWR
下载PDF
导出
摘要 采取堆腔注水策略冷却熔融池对缓解严重事故后果、降低安全壳的失效概率具有十分重要的作用。本文采用SCDAP/RELAP5程序,首先以韩国APR1400相关实验结果对堆腔外部注水自然对流冷却能力进行比对分析,然后建立了耦合堆腔注水措施的融熔池冷却的核电厂模型,以非能动压水堆为研究对象,针对冷段大破口失水事故(LBLOCA)始发严重事故序列,分析堆芯熔融进展过程中实施堆腔注水策略后融熔池的冷却特性及堆腔外部注水的自然循环能力。分析结果表明,LBLOCA下,当堆芯出口温度达到923K时,实施堆腔注水后能有效冷却下封头内的熔融池,从而保持压力容器的完整性。 Molten pool cooling by cavity flooding strategy plays an important role to mitigate severe accident consequences and decrease the containment failure probability.SCDAP/RELAP5 code was used in this paper.Firstly,the code calculation results were compared with the Korea experiment of APR1400,and the capability for natural circulation cooling analysis with cavity flooding was validated.Then,the model of a passive PWR was built for analyzing molten pool cooling coupled with cavity flooding strategy.For severe accident induced by large break loss of coolant accident(LBLOCA)at cold leg,molten pool cooling characteristics during core damage progression were analyzed.After cavity flooding strategy was implemented,heat removal capability by the natural circulation was also analyzed.The results indicate that molten pool in the lower head can be effectively cooled by cavity flooding after core exit temperature exceeds 923 Kduring LBLOCA,and the integrity of RPV can be maintained.
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2015年第10期1786-1791,共6页 Atomic Energy Science and Technology
基金 国家自然科学基金资助项目(11205099)
关键词 堆腔注水 SCDAP/RELAP5程序 熔融池冷却分析 cavity flooding SCDAP/RELAP5 code analysis of molten pool cooling
  • 相关文献

参考文献10

  • 1武铃珺,郭丁情,曹学武.压水堆核电厂严重事故下堆腔注水措施研究[J].原子能科学技术,2009,43(1):46-50. 被引量:5
  • 2李京喜,黄高峰,佟立丽,曹学武.DVI管线破裂始发严重事故的IVR分析[J].原子能科学技术,2010,44(B09):238-241. 被引量:3
  • 3REMPE J L, SUH K Y, CHEUNG F B, et al. In-vessel retention strategy for high power reac- tors[R]. USA: Idaho National Engineering and Environmental Laboratory, 2005.
  • 4AHN Kwangii, KIM Dongha. A state-of-the-art review of the reactor lower head models employed in three representative U. S. severe accident codes[J]. Progress in Nuclear Energy, 2003, 42 (3) : 361-382.
  • 5KANG K H, PARK R J, KIM S B, et al. Flow analyses using RELAP5/MOD3 code for OPR1000 under the external reactor vessel cooling[J]. An- nals of Nuclear Energy, 2006, 33: 966-974.
  • 6PARK R J, KIM S B, KIM H D. Detailed analy- sis of in-vessel melt progression in the LOCA of the KSNP using SCDAP/RELAP5 [C] // Korean Nuclear Society Fall Meeting. Korea. is. n.], 2004.
  • 7TAOJ, TONG L L, CAO X W. A study on natural circulation flow under reactor cavity flooding condition in advanced PWR[J]. Journal of Power and Energy Systems, 2011, 5(3): 429- 440.
  • 8HA K S, PARK P J, KIM H Y, et al. A study on the two-phase natural circulation flow through the annular gap between a reactor vessel and in- sulation system[J]. Int Comm Heat Mass Trans- fer, 2004, 31: 43-52.
  • 9JAHN M, REINEKE H H. Free convection heat transfer with internal heat source, calculations and measurements, NUREG/CR-O027C]//Pro- ceedings of the International Meeting on Thermal Nuclear Reactor Safety. IS. 1.]: Is. n.], 1983: 996-1 010.
  • 10AP1000 probabilistic risk assessment report, Rev. 1, APP-GW-GL-022[R]. USA: Westing- house, 2003.

二级参考文献9

  • 1刘鑫,陈松.百万千瓦级压水堆核电厂大破口失水严重事故序列分析[J].核电工程与技术,2004,17(3):12-16. 被引量:1
  • 2KNUDSON D L, REMPE J L. In-vessel retention modeling capabilities of SCDAP/RELAP53D[C]//Tenth International Conference on Nuclear Engineering. Arlington, USA: [ s. n. ], 2002: ICONE 10-22754.
  • 3SONG J H, KIM S B. On some salient unresolved issues in severe accidents for advanced light water reactors[J]. Nuclear Engineering and Design, 2005, 235: 2 055-2 069.
  • 4REMPEA J L, KNUDSONA D L. Corium retention for high power reactors by an in-vessel corecatcher in combination with external reactor vessel cooling[J]. Nuclear Engineering and Design, 2004, 230: 293-309.
  • 5THEOFANOUS T G. In-vessel retention as a severe accident management strategy, NURETH-8 [R]. Kyoto, Japan:[s. n. ], 1997.
  • 6THEOFANOUS T G, SYRI S. The coolability limits of a reactor pressure vessel lower head, center JBR risk studies and safety[J]. Nuclear Engineering and Design, 1997, 169:. 59-76.
  • 7NEA.Workshop on in-vessel core debris retention and coolability,NEA/CSNI/R(98)21[R].[S.l.]:NEA,1998.
  • 8Westinghouse Electric Company.AP1000 design control document,Revision 14[R].USA:Westinghouse Electric Company,2006.
  • 9THEOFANOUS T G,L1U C.In-vessel coolability and retention of a core melt[J].Nuclear Engineering and Design,1997,169:1-48.

共引文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部