期刊文献+

金属热导率的第一性原理计算方法在铝中的应用 被引量:2

Thermal conductivity of metal from first principles calculations and its application in aluminum
下载PDF
导出
摘要 热导率是金属材料的一个基本物理性质,金属材料热导率的计算对理解和设计新型热电材料具有重要的理论意义。由于金属的热导率由声子热导率和电子热导率两部分组成,本文从第一性原理计算出发,并以金属铝为例,计算了铝的声子谱和电子能带结构,并结合徳拜模型、形变势模型和Drude自由电子气模型,分别计算获得金属铝在300 K下的声子热导率和电子热导率为4.8 W/m K和186.1 W/m K,该计算值与实验值较吻合。该研究为预测和设计新的热电材料提供理论支持。 Thermal conductivity is a basic physical property of metal materials. The calculation of thermal conductivity of metallic materials has great theoretical significance for understanding and designing new thermoelectric materials.Since the thermal conduc-tivity of metal is composed of two parts, the phonon thermal conductivity and the electronic thermal conductivity, the phonon spectra and electron energy band structures of the metal Al are calculated by the first principles calculation combined with the Debye mod-el, deformation potential model and the Drude free electron gas model. The calculated phonon thermal conductivity and electronic thermal conductivity are 4.8 W/mK and 186.1 W/mK at 300 K, which are in good agreement with the experimental values.The study provides theoretical support for predicting and designing new thermoelectric materials.
作者 温斌 冯幸
出处 《燕山大学学报》 CAS 北大核心 2015年第4期298-305,共8页 Journal of Yanshan University
基金 国家自然科学基金资助项目(51121061 51131002 51372215) 河北省应用基础研究计划重点基础研究项目(12965135D) 河北省自然科学基金杰出青年基金资助项目(E2013203265)
关键词 热导率 声子谱 电子能带结构 第一性原理计算 aluminum thermal conductivity phonon spectra electronic band structure first principles calculation
  • 相关文献

参考文献5

二级参考文献79

  • 1Dimitrakopoulos C D, Malenfant P R L. Organic thin film transistors for large area electronics. Adv Mater, 2002, 14:99-117.
  • 2Mori T. Molecular materials for organic field-effect transistors. J Phys: Condens Matter, 2008, 20:184010.
  • 3Kitamura M, Arakawa Y. Pentacene-based organic field-effect transistors. J Phys: Condens Matter, 2008, 20:184011.
  • 4Adamovich V I, Cordero S R, Djurovich P I, Tamayo A, Thompson M E, D'Andrade B W, Forrest S R. New charge-carrier blocking materials for high efficiency OLEDs. Org Electron, 2003, 4:77-87.
  • 5Spanggaard H, Krebs F C. A brief history of the development of organic and polymeric photovoltaics. Sol Energy Mater & Sol Cells, 2004, 83:125-146.
  • 6Berggren M, Nilsson D, Robinson N D. Organic materials for printed electronics. Nat Mater, 2007, 6:3-5.
  • 7Forrest S R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature, 2004, 428:911-918.
  • 8Karl N. Charge carrier transport in organic semiconductors. Synth Met, 2003, 133:649-657.
  • 9de Boer R W I, Gershenson M E, Morpurgo A F, Podzorov V. Organic single-crystal field-effect transistors. Phys Status Solidi A, 2004, 201:1302 1331.
  • 10Payne M M, Parkin S R, Anthony J E, Kuo C C, Jackson T N. Organic field-effect transistors from solution-deposited functionalized acenes with mobilities as high as 1 cm^2/V.s. J Am Chem Soc, 2005, 127:4986-4987.

共引文献3

同被引文献5

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部