期刊文献+

基于NIRS与支持向量机的落叶松木材密度预测 被引量:1

Modeling Wood Density with NIRS and Support Vector Machine for Dahurian Larch
下载PDF
导出
摘要 在支持向量机的理论基础上,以117个落叶松样本作为实验材料,用常规方法测定样本的密度实值,用美国ASD公司生产的波长为350-2500 nm的Lab Spec近红外光谱仪对样本进行相应的光谱采集,对光谱数据进行预处理,以文本格式导出。用LibSVM在matlab环境下建立落叶松密度预测模型。经分析,该模型对训练集的回归拟合,R^2达到了85.04%,均方差为6.46×10^-4;对测试集的回归拟合,R^2为85.20%,均方差为4.45×10^-4,拟合效果较好。结果表明,该方法可以用于落叶松木材密度预测。 In this study,based on support vector machine( SVM) theory,the sample data was based on 117 samples of dahurian larch and the wood density was determined by conventional methods of real value,NIR were collected from dahurian larch with LabSpec near infrared spectrometer which wavelength is 350 - 2500 nm of ASD,and built of dahurian larch density of NIR prediction models in matlab environment after preprocessing the spectral data and exporting in text format. Through the analysis,the model of training set regression fitting,R^2 reached 85. 04% and mean square error of 6. 46 × 10^- 4; Regression fitting of test set,R^2was85. 20% and the mean square error of 4. 45 × 10^- 4,better fitting effect,Research shows that this method can be used for larch wood density prediction.
出处 《森林工程》 2015年第5期44-47,共4页 Forest Engineering
基金 中央高校基本科研业务费专项(DL12EB07-2)
关键词 近红外光谱 支持向量机 落叶松 木材密度 NIRS Support Vector Machine dahurian larch wood density
  • 相关文献

参考文献8

  • 1Nkansah K. Rapid characterization of biomass : The use of near infra- red and fluorescence spectroscopy as process analytical technology (PAT) method[M]. WEST VIRGINIA UNIVERSITY,2009.
  • 2Chen H, Tan C, Wu T, et al. Discrimination between authentic and adulterated liquors by near- infrared spectroscopy and ensemble classification [J]. Spectrochimica Acta Part A: Molecular and Bio- molecular Spectroscopy,2014 ( 130 ) :245 - 249.
  • 3Barton I I. FE Theory and principles of near infrared spectroscopy [J]. Spectroscopy Europe ,2002 (14) : 12 - 18.
  • 4张鹏,李耀翔.近红外光谱分析技术在木材机械性能检测中的研究进展[J].森林工程,2014,30(3):68-70. 被引量:9
  • 5郝斯琪,宋博骐,李湃,李耀翔,李谦宁,李祥,宁媛松.基于近红外光谱与BP神经网络预测落叶松木屑的含水率[J].森林工程,2012,28(4):9-11. 被引量:18
  • 6Kainerstorfer J M, Sassaroli A, Hallacoglu B, et al. Practical steps for applying a new dynamic model to near - infrared spectroscopy meas- urements of hemodynamic oscillations and transient changes : impli- cations for cerebrovascular and functional brain studies [J]. Aca- demic radiology,2014,21 (2) : 185 - 196.
  • 7丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10. 被引量:920
  • 8Deng N, Tian Y, Zhang C. Support vector machines:optimization based theory, algorithms, and extensions [M]. CRC Press, 2012.

二级参考文献47

共引文献943

同被引文献19

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部