期刊文献+

一类SEIS传染病模型的分析

The analysis of SEIS epidemic model
下载PDF
导出
摘要 讨论了一类SEIS传染病模型,找到了阈值R0。当阈值R0>1时,传染病模型有唯一的地方病平衡点,且是全局渐近稳定的。 An epidemic model with has been obtained that the unique Threshold Ro 〉 1. SEIS is investigated in this paper. The Threshold Ro is endemic equilibrium is globally asymptotically stable found. It when the
出处 《青海大学学报(自然科学版)》 2015年第5期88-91,共4页 Journal of Qinghai University(Natural Science)
基金 甘肃省高等学校科研项目(2014A-111) 河西学院青年基金(QN2014-12)
关键词 传染病模型 全局渐近稳定性 地方病 epidemic model global asymptotical stability endemic diseases
  • 相关文献

参考文献8

二级参考文献28

  • 1王高雄,周之铭.常微分方程[M].北京:高等教育出版社,2007.
  • 2Wang W,Ma Z.Global dynamics of an epidemic model with delay[J].Nonlinear Analysis:Real World Applications, 2002,3:809-834.
  • 3Wang W.Global Behavior of an SEIRS epidemic model time delays[J]. Appl Math Lett, 2002,15:423-428.
  • 4Thieme R H.Persistence under relaxed point-dissipativity (with applications to an endemic model)[J].SIAM J Math Anal,1993,24:407-435.
  • 5Zhang Juan,Ma Zhien.Global dynamics of an SEIR epidemic model with saturating contact rate[J]. Math Biol,2003,185:15-32.
  • 6Liu W M,Hethcote H W,Levin S A. Dynamical behavior of epidemiological model with nonlinear incidence rates[J].J Math Biol,1987,25:359-380.
  • 7Liu W M,Levin S A,Iwasa Y.Influence of nonlinear incidence rates upon the behavior of SIRS epidemiological models[J]. J Math Biol, 1986,23:187-204.
  • 8Ruan S,Wang W.Dynamical behavior of an epidemic model with a nonlinear incidence rate [J].J Diff Equs,2003,188:135-163.
  • 9Derrick W R,van den Driessche P.A disease transmission model in a nonconstant population[J].J Math Biol, 1993,31:495-512.
  • 10Fonda A. Uniformly persistent semidynamical systems[J]. Proc Amer Math Soc, 1988,104:111-116.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部