期刊文献+

基于最优RANSAC算法的非增加式多视图三维重建 被引量:11

Non-sequential multi-view 3D reconstruction base on ac-ransac
下载PDF
导出
摘要 非增加式的多视图三维重建算法不依赖于初始重建,而是首先求解全部的摄像机参数,然后一次性重建所有三维点,其难点在于如何精确的求得全局旋转矩阵和全局平移向量.针对摄像机旋转矩阵计算的问题,引入最优RANSAC算法来稳定剔除错误的二视图关系,避免了人为设定阈值的不可靠性,提高了全局旋转矩阵的计算精度.针对摄像机平移向量计算的问题,结合了黄金分割方法与线性规划来精确计算三视图相对平移向量,提高了相对平移向量计算的精度,从而提高了最终全局平移向量的精度.实验结果表明,设计的算法能有效的提高三维重建精度. Non-sequential multi-view 3D reconstruction algorithm does not depend on the initial reconstruction.Firstly,the compute camera matrix of all views are solved,then all 3D points are reconstructed at once.The difficulty of non-sequential method is to compute the global rotations and global translations accurately.As to the computation of the global rotations,a robust algorithm is designed to remove the outliers of pairwise geometric relations base on"a contrario"formulation of RANSAC,which avoid from setting an unreliable threshold,so it can increase the accuracy of the global rotations.As to computation of the global translations,an algorithm combined golden section with linear programming is proposed to accurately compute the relative translations vector in triple of views,so it can be used to improve the accuracy of global translations.Testing results shows that our algorithm can effectively improve the accuracy of the 3 Dreconstruction.
出处 《浙江工业大学学报》 CAS 北大核心 2015年第5期473-478,共6页 Journal of Zhejiang University of Technology
基金 国家自然科学基金资助项目(61103140)
关键词 非增加式 多视图 三维重建 随机抽样一致性 黄金分割 non-sequential SFM 3D reconstruction AC-RANSAC golden section
  • 相关文献

参考文献21

  • 1汤一平,严海东.非约束环境下人脸识别技术的研究[J].浙江工业大学学报,2010,38(2):155-161. 被引量:8
  • 2杨东勇,冯形松.采用形态学算子的运动目标检测跟踪方法研究及实现[J].浙江工业大学学报,2010,38(2):149-154. 被引量:6
  • 3汤一平,庞成俊,周宗思,陈耀宇.双目全方位视觉传感器及其极线校正方法[J].浙江工业大学学报,2011,39(1):86-91. 被引量:3
  • 4POLLEFEYS M, VAN GOOL L, VERGAUWEN M,et al.Visual modeling with a hand-held camera [J]. InternationalJournal of Computer Vision,2004,59(3) :207-232.
  • 5SNAVELY N, SEITZ S M, SZELISKI R. Photo tourism: ex-ploring photo collections in 3D[C]//ACM. Transactions onGraphics (TOG). New York: ACM,2006 ,25(3) :835-846.
  • 6TRIGGS B,MCLAUCHLAN P F, HARTLEY R I,et al.Bundle adjustment-a modern synthesis [C]//Vision Algo-rithms: Theory and Practice. Corfu, Greece: Springer BerlinHeidelberg,2000 ; 298-372.
  • 7CORNELIS K, VERBIEST F, VAN G L. Drift detection andremoval for sequential structure from motion algorithms [J].Pattern Analysis and Machine Intelligence, IEEE Transactionson,2004,26(10):1249-1259.
  • 8ENQVIST O, KAHL F,OLSSON C. Non-sequential struc-ture from motion [C]//Computer Vision Workshops ( ICCVWorkshops). IEEE International Conference on Computer Vi-sion. Barcelona, Spain;IEEE,2011 :264-271.
  • 9MARTINEC D,PAJDLA T. Robust rotation and translationestimation in multiview reconstruction [C]//CVPR. IEEEConference on Computer Vision and Pattern Recognition, Min-neapolis ,Minnesota : IEEE, 2007 : 1-8.
  • 10GOVINDU V M. Robustness in motion averaging[C] //Com-puter Vision-ACCV 2006. Hyderabad, India: Springer BerlinHeidelberg,2006:457-466.

二级参考文献24

共引文献14

同被引文献79

引证文献11

二级引证文献154

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部