期刊文献+

基于Jousselme距离的证据理论决策方法 被引量:1

Decision method of evidence theory based on Jousselme distance
下载PDF
导出
摘要 针对证据理论融合结果的决策问题,提出了利用Jousselme距离对融合结果进行决策的方法。首先把辨识框架中的元素表示为目标证据,然后计算融合结果与目标证据之间的Jousselme距离,当距离最小时对应一个目标证据,此目标证据对应的元素即为最终的决策结果。仿真算例表明该方法可以得到合理的决策结果。 A decision method using the Jousselme distance is proposed to deal with the decision of the evidence theory fusion result. Firstly,transform every element of the discernment frame into the object evidence.Then calculate the Jousselme distance between the fusion results and every object evidence. When the distance is the nearest,the corresponding element of the object evidence is the decision result. Simulation calculation examples indicate that this method could complete the decision work.
出处 《河南城建学院学报》 CAS 2015年第4期69-72,83,共5页 Journal of Henan University of Urban Construction
基金 安徽省高等学校省级优秀青年人才基金重点项目(2013SQRL084ZD KJ20132316)
关键词 证据理论 信息融合 决策 证据距离 evidence theory information fusion decision evidence distance
  • 相关文献

参考文献12

  • 1Smets P, Kennes R. The transferable belief model[ J ]. Artificial Intelligence, 1994,66 (2) :191 -234.
  • 2Sudano J. Yet another paradigm illustrating evidence fusion [ C ]//Proceedings of the 9th International Conference on Infor- mation Fusion, Florence, 2006 : 1 - 7.
  • 3Cuzzolin F. On the properties of the Intersection probability [ C ]//Proceedings of 10th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Verona, Italy, 2009:287 -298.
  • 4Smarandache F, Dezert J. Applications and Advances of DSmT for Information Fusion[ M]. Rehoboth: American Research Press, 2009.
  • 5Dezert J, Han D Q, Liu Z G, et al. Hierarchical DSmP transformation for decision -making under uncertainty[ C ]//15th International Conference on Information Fusion,Singapore, 2012 : 294 - 301.
  • 6Tessem B. Approximations for efficient computation in the theory of evidence [ J ]. Artificial Intelligence, 1993,61 (2) :315 - 329.
  • 7HAN DeQiang,DENG Yong,HAN ChongZhao,YANG Yi.Some notes on betting commitment distance in evidence theory[J].Science China(Information Sciences),2012,55(3):558-565. 被引量:6
  • 8Liu Z G, Dezert J, Pan Q, et al. Combination of sources of evidence with different discounting factors based on a new dis- similarity measure [ J]. Decision Support Systems, 2011,52( 1 ) : 133 - 141.
  • 9Jousselme A L, Grenier D, Bosse E. A new distance between two bodies of evidence [J]. Information Fusion,2001, 2 (2): 91 -101.
  • 10Wen C, Wang Y, Xu X. Fuzzy Information Fusion Algorithm Of Fault Diagnosis Based On Similarity Measure Of Evidence [ J]. Advances in Neural Networks, 2008:506 - 515.

二级参考文献18

  • 1Shafer G. A Mathematical Theory of Evidence. Princeton: Princeton University Press, 1976.
  • 2Jousselme A L, Maupin P. On some properties of distances in evidence theory. In: Proceedings of the 1st Workshop on Theory of Belief Functions, Brest, France, 2010. 1-6.
  • 3Tessem B. Approximations for efficient computation in the theory of evidence. Artif Intel, 1993, 61: 315-329.
  • 4Fixsen D, Mahler R P S. The modified Dempster-Shafer approach to classification. IEEE Trans Syst Man Cybern A Syst Hum, 1997, 27: 96-104.
  • 5Jousselme A L, Grenier D, Bosse E. A new distance between two bodies of evidence. Inf Fusion, 2001, 2: 91-101.
  • 6Guo H W, Shi W K, Deng Y. Evaluating sensor reliability in classification problems based on evidence theory. IEEE Trans Syst Man Cybern B Cybern, 2006, 36: 970-981.
  • 7Deng Y, Shi W K, Zhu Z F, et al. Combining belief functions based on distance of evidence. Decis Support Syst, 2004, 38: 489-493.
  • 8Liu W R. Analyzing the degree of conflict among belief functions. Artif Intel, 2006, 170: 909-924.
  • 9Ristic B, Smets P. The TBM global distance measure for the association of uncertain combat ID declarations. Inf Fusion, 2006, 7: 276-284.
  • 10Ristic B, Smets P. Global cost of assignment in the TBM framework for association of uncertain ID reports. Aerosp Sci Technol, 2007, 11: 303-309.

共引文献5

同被引文献7

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部