期刊文献+

广播电视节目标签标注与可视化研究 被引量:2

Tagging and Labelling of Broadcast TV Programs and Research on Visualization
下载PDF
导出
摘要 针对传统广播电视节目类型和节目标签并行存在,无法定量刻画节目与标签接近程度,节目与标签关联关系展示效果不佳的问题,提出了电视节目与标签"粘度"的概念,通过为电视节目标签赋予不同权重,并利用D3插件建立节目与标签的扁平化网络结构关系,实现了节目与标签关系的定量描述及可视化展示。通过抓取网络热播剧标签,对标签粘度进行计算及可视化展示,证明提出的方案能够直观、动态地将标签粘度关系进行有效展示,可以为后续的数据分析和数据挖掘提供技术基础。 In view of traditional broadcast television program type parallel existence, which is unable to quantitatively describe the fitness and closeness of programs and labels, as well as lacking of visualizing the relationship between the programs and labels , the concept of the "viscosity" of television program and label is put forward, the labels are assigned weights, and the flat network relationship between the programs and labels is painted, which quantitatively describe and visualize the relationship between the labels and programs. Through calculating the viscosity of labels, and visualizing the relationship the programs and labels, the result prove that the method proposed in this paper show the relationship between the programs and labels dynamically and efficiently, which can provide the technical foundation for data analysis and data mining.
出处 《电视技术》 北大核心 2015年第20期71-74,共4页 Video Engineering
基金 国家广播电影电视总局科研项目(2-4)
关键词 节目分类 节目标签 标签粘度 可视化 Program classification Program label the viscosity of label Visualization
  • 相关文献

参考文献8

  • 1刘燕南,夏征宇,李颖,杨振荣.电视节目“多维组合”分类法及其编码设计[J].现代传播(北京广播学院学报),2003(1):22-25. 被引量:9
  • 2张斌,张引,高克宁,郭朋伟,孙达明.融合关系与内容分析的社会标签推荐[J].软件学报,2012,23(3):476-488. 被引量:42
  • 3CHEN M, EBERT D, HAGEN H, et al. Data, Information, and Knowledge in Visualization[ J ]. Computer graphics and applications, 2009(6) : 12-19.
  • 4Wikipedia.信息可视化[EB/OL].[2015-03-07].http://zh.wikipedia.org/wiki/信息可视化.
  • 5MAY R, HANRAHAN P,KEIM D A,et al. The state of visual ana- lytics: views on what visual analytics is and where it is going[ C]// Proceedings of Visual Analytics Science and Technology (VAST). Salt Lake City, Utah, USA : IEEE Press ,2010:257-259.
  • 6XIONG Lirong, WANG Mengjun, FAN Jing. A visualization system for web retrieved credit information [ C ]//Proceedings of Natural Computation( ICNC ). Shanghai : IEEE Press ,2011:728-733.
  • 7陆泉,刘高,陈静.一个图像语义可视化交互标注研究平台——以“情感语义标注”为例[J].情报理论与实践,2014,37(8):111-116. 被引量:6
  • 8CARD S,MACKINLAY J D, SHNE1DERMAN B. Readings in in- formation visualization : using vision to think [ M ]. San Francisco: Morgan Kaufmann Publishers,1999.

二级参考文献46

  • 1邢维慧,袁建敏.用户信息服务的认知心理分析[J].情报科学,2004,22(11):1404-1408. 被引量:14
  • 2Guy M,Tonkin E.Folksonomies:Tidying up tags-D-Lib Magazine,2006,12(1).[doi:10.1045/january2006-guy].
  • 3Sigurbj-rnsson B,van Zwol R.Flickr tag recommendation based on collective knowledge.In:Huai JP,Chen R,Hon HW,Liu YH,Ma WY,Tomkins A,Zhang XD,eds.Proc.of the 17th Int’l Conf.on World Wide Web.New York:ACM,2008.327-336.[doi:10.1145/1367497.1367542].
  • 4Hotho A,J-schke R,Schmitz C,Stumme G.Information retrieval in folksonomies:Search and ranking.In:Sure Y,Domingue J,eds.Proc.of the Semantic Web:Research and Applications,3rd European Semantic Web Conf.Heidelberg:Springer-Verlag,2006.411-426.[doi:10.1007/11762256_31].
  • 5Symeonidis P,Nanopoulos A,Manolopoulos Y.A unified framework for providing recommendations in social tagging systemsbased on ternary semantic analysis.IEEE Trans.on Knowledge and Data Engineering,2010,22(2):179-192.[doi:10.1109/TKDE.2009.85].
  • 6Harvey M,Baillie M,Ruthven I,Carman M.Tripartite hidden topic models for personalised tag suggestion.In:Gurrin C,He YL,Kazai G,Kruschwitz U,Little S,Roelleke T,Rüger SM,van Rijsbergen K,eds.Advances in Information Retrieval,the 32ndEuropean Conf.on IR Research.Heidelberg:Springer-Verlag,2010.432-443.[doi:10.1007/978-3-642-12275-0_38].
  • 7Blei DM,Ng AY,Jordan MJ.Latent dirichlet allocation.Journal of Machine Learning Research,2003,3:993-1022.[doi:10.1162/jmlr.2003.3.4-5.993].
  • 8Hofmann T.Unsupervised learning by probabilistic latent semantic analysis.Machine Learning,2001,42(1/2):177-196.[doi:10.1023/A:1007617005950].
  • 9Banerjee A,Basu S.Topic models over text streams:a study of batch and online unsupervised learning.In:Proc.of the 2007 SIAMInt’l Conf.on Data Mining.Philadelphia:SIAM,2007.431-436.
  • 10Canini KR,Shi L,Griffiths TL.Online inference of topics with latent dirichlet allocation.In:van Dyk D,Welling M,eds.Proc.ofthe 12th Int’l Conf.on Artificial Intelligence and Statistics.Boston:MIT Press,2009.65-72.

共引文献54

同被引文献24

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部