期刊文献+

有序性三维胶原支架材料的制备与MSCs诱导效应研究 被引量:3

Fabrication of 3D Collagen Scaffolds with Orientated Channels and MSCs Inductive Effect
下载PDF
导出
摘要 目的探讨有序支架材料联合骨髓间充质干细胞(mesenchymal stem cells,MSCs)修复脊髓损伤的可行性。方法通过温度梯度法制备有序性胶原支架材料,以神经元轴突延伸的方向性验证,并诱导材料上MSCs分化成神经元。结果扫描电子显微镜下发现,胶原支架材料方向性成孔,孔径大小为(60±10)μm,能诱导脊髓背根神经节(dorsal root ganglion,DRG)中神经元方向性延伸轴突。有序性材料上的MSCs沿孔径的方向排列细胞体,诱导分化的神经元也具有方向性。结论有序性胶原支架材料能诱导MSCs和MSCs源神经元方向性延伸轴突,为脊髓损伤治疗提供一种可行性方案。 Objective To investigate the feasibility of combining uniaxial guidance collagen scaffolds and bone marrew mesenchymal stem cells( MSCs) for the repair of spinal cord injury. Methods Temperature gradients technique was employed to fabricate collagen scaffold containing highly orientated channels in this study. Neurons from MSCs were also induced in scaffolds. Results Scanning electron microscopy( SEM) analysis revealed that scaffolds with axially directed pore architectures were obtained and the pore size was( 60 ± 10)μm. Axons extending from the cell bodies of neurons in spinal cord dorsal root ganglion( DRG) were guided by scaffold with direction. Induced neuronal cell from MSCs also displayed an orientated morphology and extended axons along the direction of microchannels. Conclusion The results lay the feasibility foundation of combining MSCs and orderly collagen scaffolds for treatment of spinal cord injury.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2015年第5期332-335,共4页 Space Medicine & Medical Engineering
基金 国家自然科学基金-联合基金(U1204326) 信阳师范学院博士启动基金(0201305) 信阳师范学院2013年青年基金(2013-QN-068)
关键词 有序材料 骨髓间充质干细胞 胶原蛋白 激光共聚焦显微镜 uniaxial guidance scaffolds bone marrow mesenchymal stem cells collagen lyzer cofocal microscope
  • 相关文献

参考文献15

  • 1Kim M,Park SR, Choi BH. Biomaterial scaffolds used for the regeneration of spinal cord injury ( SCI ) [J]. Histol His- topathol, 2014, 29 (11): 1395-1408.
  • 2Riblett BW,Francis NL, Wheatley MA, et al. Ice-templated scaffolds with microridged pores direct DRG neurite growth [ J]. Advanced Functional Materials, 2012, 22(23 ): 4920- 4923.
  • 3Zhang, YG,Huang JH, Hu XY, et al. Omentum-wrapped scaffold with longitudinally oriented micro-channels promotes axonal regeneration and motor functional recovery in rats[ J ]. PLoS One, 2011, 6(12) : e29184.
  • 4Francis NL, Hunger PM, Donius AE, et al. Strategies for neurotrophin-3 and chondroitinase ABC release from freeze- cast chitosan-alginate nerve-guidance scaffolds [ J ]. J Tissue Eng Regen Med, 2014.
  • 5Huang J, Lu L, Zhang J, et al. Electrical stimulation to con- ductive scaffold promotes axonal regeneration and remyelina- tion in a rat model of large nerve defect [ J ]. PLoS One, 2012. 7 (6) : e39526.
  • 6安晓,史廷春,陈美花,蔡建辉,岳秀艳.修复脊髓损伤的组织工程多孔支架的实验研究[J].航天医学与医学工程,2013,26(1):56-59. 被引量:2
  • 7Cholas RH, Hsu HP, Spector M. The reparative response to cross-linked collagen-based scaffolds in a rat spinal cord gap model[J].Biomaterials, 2012, 33 (7): 2050-2059.
  • 8Davidenko N, Gibb T, Schuster C, et al. Biomimetie colla- gen scaffolds with anisotropie pore architecture[J]. Acta Bio- mater, 2012, 8 (2) : 667-676.
  • 9Chen L,Xiao Z, Meng Y, et al. The enhancement of cancer stem cell properties of MCF-7 cells in 3D collagen scaffolds for modeling of cancer and anti-cancer drugs [J]. Biomaterials, 2012, 33(5) : 1437-1444.
  • 10Suzuki H,Taguchi T, Kato Y, et al. Transplantation of neu- rospheres derived from bone marrow stromal cells promotes neurological recovery in rats with spinal cord injury[J]. Med Mol Morphol, 2011, 44(3) : 131-138.

二级参考文献11

  • 1熊卓.[D].北京:清华大学,2002.
  • 2Langer R, Vacanti JP. Tissue engineering [ J ]. Science, 1993, 260: 920-926.
  • 3Moore M J, iedman JA, Lewellyn EB, et al. Maltiple-ehan- nel scaffolds to promote spinal cont axon regeneration [ J ]. Biomaterials, 2006, 27:419-429.
  • 4Liu L, Xiong Z, Yan YN, et al. Porous morphology, porosi- ty, mechanical properties of poly ( alpha-hydroxy acid ) -trical- cium phosphate composite scaffi-lds fabricated hy low-tempera- ture deposition [ J ]. Biomed Mater Res, 2007, 82 ( 3 ) : 618- 629.
  • 5Teng YD, Lavik EB,Qu x, et al. Functional recovery fi-llow- ing traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells [ J ]. Proc Nail Acad Sei USA, 2002, 99 (5) : 3024-3029.
  • 6Olson HE,Rooney GE,Gress L, et al. Neural stem cell and Sehwann cell loaded biodegradable polymer scaffolds supporl axonal regeneration in the transeeted spinal cord [ J ]. Tissue Eng, 2009, 15(7): 1797-1805.
  • 7CAI Jianhui, SHI Tingehun. The research of tissue engineer- ing scaffold about spinal eord injury [ J ]. Applied Machines and Materials, 2010, 33: 383-389.
  • 8Kryeh AJ, Rooney GE, Chen Bingkun, et al. Relationship between scaffold channel diameter and number of regenerating axons in the Iransected rat spinal cord [ J ]. Aeta Biomateria- lia, 2009, 5: 2551-2559.
  • 9Hutmaeher D, Schantz T, Zein I, et al. Mechanical proper- ties and cell euhural response of polycapcrolactone scaffolds designed and fabricated via fuse deposition m-teling [ J ]. Bi- omed Mater Res, 2001 , 55(2) : 203-206.
  • 10Pang L, Hu YY, Yan YN, et al. Surface mtalification of PL- GA/beta-TCP scaffold for bone tissue engineering: hybridiza- tion with collagen and apatite [ J ]. Surface & Coatings Tech- nology, 2007, 201 (24):9549-9557.

共引文献1

同被引文献29

引证文献3

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部