期刊文献+

扩散磁共振成像中取向分布函数的球面插补方法

Spherical Interpolation of Orientation Distribution Function in Diffusion MRI
下载PDF
导出
摘要 目的寻求一种基于少量采样数据即能实现白质纤维束路径跟踪的新方法,提出取向分布函数(orientation diffusion function,ODF)场球面插补算法,以解决q空间球面成像(Q-ball imaging,QBI)数据采样负担过重、耗时过长等临床应用瓶颈。方法首先基于采样数据重建ODF场,然后根据插补点与所有采样点之间夹角确定插补方向矩阵和宽度插补参数,之后基于自然指数函数来计算转换矩阵,最后对采样信号进行转换得到插补ODF场。结果采用流线跟踪法进行了白质纤维束路径跟踪,获得了较为合理的结果;并分析了角度宽度参数对插补结果的影响,确认了最适合的角度宽度参数选取准则。结论该球面插补方法基于少量采样数据即可实现ODF场的有效插补,可进行有效的白质纤维束路径跟踪。 Objective To find a new method that could track fiber paths based on fewer sampling datasets,the spherical interpolation algorithm of orientation diffusion function( ODF) field was proposed to solve the timeconsuming and heavy-sampling problem of QBI in clinical application. Methods First,the ODF from raw sampling datasets was reconstructed. Then,the orientation matrix and the width parameter were calculated according to the angles between interpolating point and sampling points. Finally,the transform matrix was calculated based on natural exponential function. Results In order to verify our algorithm,the method of streamline was used to track the fiber paths,and reasonable results were obtained. In addition,the impact of angle width parameter on interpolation was also analyzed,and the selection criterion was confirmed. Conclusion The new method can achieve effective ODF interpolation for path tracking based on fewer sampling datasets.
出处 《航天医学与医学工程》 CAS CSCD 北大核心 2015年第5期345-349,共5页 Space Medicine & Medical Engineering
基金 国家自然科学基金资助项目(NSFC-51207038) 浙江省自然科学基金资助项目(Q12F010017)
关键词 纤维交叉 球形插补 取向分布函数 磁共振成像 fiber crossing spherical interpolation orientation distribution function MRI
  • 相关文献

参考文献16

  • 1Sakkalis V. Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG [ J ]. Comput- ers in Biology and Medicine, 2011, 41 (12) : 1110-1117.
  • 2Penke L,Mauiega S, Bastin ME, et al. Brain white matter tract integrity as a neural foundation for general intelligence [J]. Molecular Psychiatry,2012, 17(10) : 1026-1030.
  • 3Sekino M, Yamaguchi K, Iriguchi N, et al. Conductivity ten- sor imaging of the brain using diffusion-weighted magnetic res- onance imaging [J].Journal of applied physics, 2003, 93 (10) : 6730-6732.
  • 4吴占雄,高明煜,朱善安.基于扩散张量成像的脑组织各向异性电导率计算模型的研究综述[J].生物物理学报,2011,27(6):491-499. 被引量:3
  • 5胡延文,逯迈,陈小强,董绪伟,田瑞.基于DTI的脑白质电导率张量计算模型比较研究[J].航天医学与医学工程,2014,27(4):246-251. 被引量:1
  • 6Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experi- mental design and data analysis - a technical review [ J ]. NMR in Biomedicine,2002, 15 (7) : 456-467.
  • 7Tuch DS, Reese TG, Wiegell MR, et al. Diffilsiun MRI of complex neural architecture [ J ]. Neuron, 2003, 40 (5) : 885-895.
  • 8Chao YP, Chen JH, Cho KH, et al. A muhiple streamline approach to high angular resolution diffusion traetography [ J]. Medical Engineering & Physics, 2008, 30 (8) : 989- 996.
  • 9Jeffrey IB, Sung WC, Pratik M, et al. Probabilistic stream line q-ball tractography using the residual bootstrap [ J ]. Neurohnage, 2008, 39 ( 1 ) : 215-222.
  • 10Stamatios NS, Li B, Paul SM, et al. Brain tractograpiay using Q-ball imaging and graph theory: improved connectivities through fiber crossings via a model-based approach [ J]. Neu- roImage, 2010, 49(3): 2444-2456.

二级参考文献42

  • 1Arkhtari M, Byrant HC, Mamelak AN, Flynn ER. Conductivities of three-layer live human skull. Brain Topography, 2002, 14(3): 151-167.
  • 2Hoekema R, Wieneke GH, Leijten FSS, van Veelen CWM, van Rijen PC, Huiskamp GJM, Ansems J, van Huffelen AC. Measurement of the conductivity of skull, temporarily removed during epilepsy surgery. Brain Topography, 2003, 16(1): 29-38.
  • 3Seo JK, Pyo HC, Park C, Kwon O, Eung JW. Image reconstruction of anisotropic conductivity tensor distribution in MREIT: Computer simulation study. Phys Med Biol, 2004, 49(18): 4371-4382.
  • 4Geddes LA, Baker LE. The specific resistance of biological material- A compendium of data for the biomedical engineer and physiologist. Med Biol Eng, 1967, 5(3): 271-293.
  • 5Haueisen J, Tuch DS, Ramon C, Schimpfd PH, Wedeenb V J, Georgee JS, Belliveau JW. The influence of brain tissue anisotropy on human EEG and MEG. Neurolmage, 2002, 15(1): 159-166.
  • 6Tuch DS, Wedeen V J, Dale AM, George JS, Belliveau JW. Conductivity mapping of biological tissue using diffusionMRI. Ann N Y Acad Sci, 1999, 888:314-316.
  • 7Sekino M, Yamaguchi K, Iriguchi N, Ueno S. Conductivity tensor imaging of the brain using diffusion-weighted magnetic resonance imaging. J Appl Phys, 2003, 93(10): 6730-6732.
  • 8Wang K, Zhu S, Mueller BA, Mueller BA, Lim KO, Liu ZM, He B. A new method to derive white matter conductivity from diffusion tensor MRI. IEEE Trans Biomed Eng, 2008, 55(10): 2418-2416.
  • 9Wolters CH, Anwander A, Tricoche X, Weinstein D, Koch MA, MacLeod RS. Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling. Neurolmage, 2006, 30(3): 813-826.
  • 10Shimony JS, McKinstry RC, Akbudak E, Aronovitz JA, Snyder AZ, Lori NF, Cull TS, Conturo TE. Quantitative diffusion-tensor anisotropy brain MR imaging: Normative human data and anatomic analysis. Radiology, 1999, 212(3): 770-784.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部