期刊文献+

并行多传感器多目标跟踪系统性能优化算法 被引量:2

Centralized Multi-Sensor Structured Branch Multiple Hypothesis Algorithm
下载PDF
导出
摘要 研究密集杂波环境下的并行多传感器多目标跟踪优化问题,针对传统的数据互联在杂波数量多,虚警率高的情况下测量与航迹关联计算量大,配对正确率低等缺陷,提出了一种采用多级数据压缩的结构化分枝多假设改进算法,设计了一种确定测量与航迹最优配对的测量聚类方法,将已有的单级数据压缩技术扩展为两级数据压缩。利用上述方法对结构化分支多假设算法中的冗余分枝进行压缩和剪枝,产生航迹家族树最优的"等效分支",并给出优化后的状态估计输出。仿真证明,改进算法减少了运算时间,提高了跟踪精度和实时性,为密集杂波环境下的多目标跟踪提供了一种有效方法。 This paper studies the parallel multi - sensor multi - target tracking in dense clutter. A structured branch multiple hypothesis tracking algorithm based on multi -level data compression is proposed to solve the prob- lem of large association computation, low corrected paring rate between measurements and tracks with traditional data association algorithm performed under the condition of dense clutter and high false alarm rate. The algorithm is de- signed to determine the optimal pairing and expand the existed single - stage data compression to two - stage. Then redundant branches generated in traditional MHT algorithm are processed with this method for compression and prun- ing. After that, Optimal Equivalent branch is remained in track family tree and optimized output state estimate is giv- en. Simulation result shows that this approach performs good tracking accuracy and real -time ability, reduces the computation time and provides an effective way for multi - target tracking in dense clutter.
出处 《计算机仿真》 CSCD 北大核心 2015年第10期69-73,122,共6页 Computer Simulation
基金 航空科学基金资助项目(2014ZC07003)
关键词 密集杂波 并行多传感器 结构化分支 多假设跟踪 数据压缩 Dense clutter Parallel multi - sensor Structured branch Multiple hypothesis tracking Data com- pression
  • 相关文献

参考文献9

  • 1J Linas, R Antony. Blackboard Concepts for Data Fusion and Com- mand and Control Applications [ J ]. International Journal on Pat- tern Recognition and Artificial Intelligence. 1993,7(2).
  • 2L Y Pao, C W Frei. A Comparison of Parallel and Sequential Im- plementation of a Multi - Sensor Multi - target Tracking Algorithm [CI. Proc. 1995 American Control Conf. Seattie, Washington, 1995:1683 - 1687.
  • 3Bar - shalom, Y ( Ed. ). Multi - target Multi - Sensor Tracking : Applications and Advances,2 [ J]. Norwood, M A : Artech House, 1992.
  • 4张晶炜.多传感器多目标跟踪技术研究[D].海军航空工程学院博士论文,2007.
  • 5熊伟,张晶炜,何友.基于S-D分配的多传感器联合概率数据互联算法[J].清华大学学报(自然科学版),2005,45(4):452-455. 被引量:3
  • 6张晶炜,熊伟,何友.基于数据压缩的多传感器多假设算法[J].北京航空航天大学学报,2007,33(12):1448-1451. 被引量:8
  • 7S Deb, K R Pattipati, Y Bar - Shalom. An S - dimensional as- signment algorithm for track initiation [ C ]. Proc of the IEEE In- tConf Systems Engineering. Japan, 1992:527 -530.
  • 8T L Ogle, et al. Multiplatform multisensory tracing with surveil- lance radars [ J ]. Proceeding of the Thirty Sixth Southeastern Symposium. Atlantic, GA, USA: Georgia Tech Res Inst, Georgia Inst,2004 : 190 - 194.
  • 9D L Hall,J Linas. Handbook of Multi - sensor Data Fusion[ M]. The Electrical Engineering and Applied Signal Processing Series, CRC Press, 2001.

二级参考文献1

共引文献9

同被引文献47

  • 1耿文东.编队目标跟踪综述[c]//第十届全国雷达学术年会.北京:国防工业出版社,2008:367-371.
  • 2Pratt W K.数字图像处理[M].邓鲁华,张延恒译.北京:机械工业出版社,2005:299-325.
  • 3张晶炜,熊伟,何友.基于数据压缩的多传感器多假设算法[J].北京航空航天大学学报,2007,33(12):1448-1451. 被引量:8
  • 4王海鹏.多传感器编队目标跟踪算法研究[D].烟台:海军航空工程学院,2012.
  • 5PENG Z H, SUN L, CHEN J, et al. Path Planning of Multiple UAVs L0w-Altitude Penetration Based on Improved Multi-Agent Coevolutionary Algorithm[C: //30th Chinese Control Conference, Yantai: IEEE, 2011:4056-4061. QIN Zhen, SHELTON C R. Improving Multi-Target Tracking via Social Groupingl-C://25th IEEE Confer- ence on Computer Vision and Pattern Recognition, Providence, Rhode Island: IEEE' 2012 : 1972-1978.
  • 6TRAN A, MANZANERA A. A Versatile Object Tracking Algorithm Combining Particle Filter and Generalised Hough Transform E C: // International Conference on Image Processing Theory, Tools and Applications, Orleans, France:IEEE, 2015:105-110.
  • 7ZHOU H, GAO Y, YUAN G, et al. Adaptive Multi- ple Cues Integration for Particle Filter Tracking[C']// IET International Radar Conference, Hangzhou:IET, 2015:1-6.
  • 8JIN Y, DING Y, HAO K, et al. An Endocrine- Based Intelligent Distributed Cooperative Algorithm for Target Tracking in Wireless Sensor Networks [J]. Soft Computing, 2015, 19(5) :1427-1441.
  • 9BEARD M, REUTER S, GRANSTROM K, et al. Multiple Extended Target Tracking with Labeled Random Finite Sets[J]. IEEE Trans on Signal Pro- cessing, 2016, 64(7) :1638-1653.
  • 10BEARD M, VO B T, VO B N. Bayesian Multi-Tar- get Tracking with Merged Measurements Using La- belled Random Finite Sets[J]. IEEE Trans on Signal Processing, 2015, 63(6): 1433-1447.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部