期刊文献+

基于改进证据理论的区间直觉模糊群决策方法 被引量:5

Interval-Valued Intuitionistic Fuzzy Group Decision-Making Method Based on Improved Theory of Evidence
下载PDF
导出
摘要 针对区间直觉模糊多属性群决策问题中属性权重和专家权重完全未知的情况,根据"证据折扣"思想,采用改进D-S证据理论的方法进行决策。将专家的区间直觉模糊决策矩阵规范化并转换成Mass函数;确定了考虑区间直觉模糊熵的属性权重计算方法,将专家对属性集关于方案集的评价证据进行修正与合成,得到各专家关于方案集的评价证据;确定了融合冲突系数和Jousselme距离的证据冲突度计算方法并以此度量专家权重,将各专家关于方案集的评价证据进行修正与合成,最终得到了方案的优劣排序。通过算例编程计算验证了方法的可行性和有效性。 Aiming at the situation of completely unknown attributes' weights and experts' weights in interval - valued intuitionistic fuzzy multi - attribute group decision - making problems, in accordance with the idea of evidence discount, a method based on improved Dempster- Sharer (D -S) theory of evidence is used to make decision. The experts' interval- valued intuitionistic fuzzy decision -matrix is normalized and transformed into mass function. An attribution -weight calculation method is ascertained considering interval - valued intuitionistic fuzzy entropy, the muhi - attribute of experts' group towards project set is modified and integrated, and the evidence information of all experts towards project set is obtained. The calculation method of evidence conflict degree is established based on conflict coefficient and Jousselme distance and is used to compute the expert -weight, then the evidence information of all experts towards project set is modified and integrated and the ranking order of all the projects is determined. A numerical example is given to verify the feasibility and validity of this method.
出处 《计算机仿真》 CSCD 北大核心 2015年第10期282-286,共5页 Computer Simulation
基金 总装"十二五"国防预先研究项目(513300102)
关键词 多属性群决策 区间直觉模糊熵 证据冲突度 Multi- attribute group decision- making Interval- valued intuitionistic fuzzy entropy Evidence conflict degree
  • 相关文献

参考文献15

二级参考文献184

共引文献234

同被引文献41

  • 1张洪美,徐泽水.基于不确定语言信息的C-OWA和C-OWG算子及其应用[J].解放军理工大学学报(自然科学版),2005,6(6):604-608. 被引量:24
  • 2刘锋,袁学海.模糊数直觉模糊集[J].模糊系统与数学,2007,21(1):88-91. 被引量:84
  • 3郭亚军,姚远,易平涛.一种动态综合评价方法及应用[J].系统工程理论与实践,2007,27(10):154-158. 被引量:173
  • 4ZADEH L A. Fuzzy sets [J]. Information and Control, 1965,8(3) :338-353.
  • 5ATANASSOV K T. Intuitionistic fuzzy sets [J]. Fuzzy Sets and Systems, 1986,20 (1) : 87-96.
  • 6ATANASSOV K, GARGOV G. Interval-valued intuitlonis-tic Fuzzy .sets [J]. Fuzzy Sets and Systems, 1989,31 (3): 343-349.
  • 7ATANASSOV K T. Operators over interval-valued intu- itionistic Fuzzy sets [J]. Fuzzy Sets and Systems, 1994,64 (2) :159-174.
  • 8XU Z S. Approaches to multiple attribute group decision making based on intuitionistic fuzzy power aggregation op- erators [ J ]. Knowledge-Based Systems, 2011, 24 ( 6 ) : 749-760.
  • 9PARK D G,KWUN Y C,PARK J H,et al. Correlation co- efficient of interval-valued intuitionistic fuzzy sets and its application to multiple attribute group decision making problems[J]. Mathematical and Computer Modelling, 2009,50(9/10) : 1279-1293.
  • 10王坚强,张忠.基于直觉模糊数的信息不完全的多准则规划方法[J].控制与决策,2008,23(10):1145-1148. 被引量:49

引证文献5

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部