摘要
在电源车虚拟训练系统的评价模型的研究中,关键是对人员的操作水平进行有效评价。如果指标权重的分配缺乏客观性,将导致评价结果不够科学合理。针对这一问题,采用群决策熵模型和模糊距离法,根据专家的决策数据计算专家权重,确定合理的指标权重;其次,为了降低评价过程中的随机性和模糊性,引入云模型计算评价指标隶属度;最后结合模糊综合评价法构建云模糊综合评价模型,并进行了实例验证。实验结果符合人员操作情况及实际操作水平,表明上述评价模型具有可行性。
Evaluation model is studied for the virtual training system of certain type power supply vehicle, and it is important to judge the operators' operation effectively. The lack of objectivity on assignment of criteria weights may lead to unreasonable evaluation result. To solve this problem, a group decision entropy - fuzzy distance is put forward. The criteria weights are obtained by calculating the expert weights using the decision data of experts. And to decrease fuzziness and randomness of the evaluation, the cloud model is used to obtain the membership degrees of criteria. At last, combined with fuzzy comprehensive evaluation, the cloud - fuzzy comprehensive evaluation mode/is established and verified through example. The result accords with the actual operation and level of operators and demonstrates the feasibility of the evaluation model .
出处
《计算机仿真》
CSCD
北大核心
2015年第10期335-339,共5页
Computer Simulation
关键词
电源车
评价模型
指标权重
群决策熵模型
云模糊综合评价模型
Power supply vehicle
Evaluation model
Criterion weight
Entropy model of group decision
Cloud -fuzzy comprehensive evaluation model