摘要
在无刷直流电机调速系统优化研究中,针对传统PID控制器存在跟踪性差、初始状态选取不准确等问题,在BP神经网络优化PID参数的基础上,设计了一种遗传算法和BP神经网络结合的PID控制器。利用遗传算法弥补BP神经网络的局部性缺点,首先对BP神经网络的权值和阈值优化,再对神经网络的初始拓扑结构进行优化设置,最后根据优化后BP神经网络训练得到PID参数。通过在MATLAB/Simulink建立调速系统模型,将优化后的PID控制参数应用到此调速控制中,实验结果显示优化后的调速控制系统动态响应快、对非线性干扰有很好的补偿,速度跟踪精度得到了明显提高。
Aim at the traditional PID controller problem of BLDCM speed regulating system, a new method was presented in the paper, which can optimize PID parameter based on Genetic Algorithm (GA) and BP Neural Network. Having researched the defects of the BP - PID control, both topology structure and network parameter of Neural Network were optimized by using GA. The optimal PID parameters were generated by this optimized network's train- ing. With MATLAB/Simulink, a simulation model was established, then the PID parameters were applied to the sys- tem, the experiment result proves that the response of speed regulating control is quickly, and can better make up the nonelinearity jam, and the speed tracking precision can be obviously improved.
出处
《计算机仿真》
CSCD
北大核心
2015年第10期426-429,438,共5页
Computer Simulation
关键词
调速系统
控制器
遗传算法
神经网络
非线性
Speed regulating system
Controller
Genetic algorithm
Neural network
Nonelinearity