期刊文献+

基于Raft一致性协议的高可用性实现 被引量:9

High availability implementation based on Raft
下载PDF
导出
摘要 随着互联网的快速发展和大数据时代的来临,传统数据库的局限性开始逐渐显现,而支持海量数据存储和高并发访问的分布式数据库系统越来越流行.在此背景下阿里巴巴集团研发了一款适用于海量数据存储的分布式数据库系统(OceanBase),并提供单集群和多集群两种部署模式.但多集群部署模式下的可用性较低,无法满足关键性应用的需求,包括:发生故障时不支持主备集群的自动切换;主备集群之间无法保证日志的强同步.针对上述问题,本文分析了传统数据库的高可用方案,针对OceanBase架构的特点,结合了Raft算法的思想,设计并实现了基于时间戳的分布式选举模块、自动化的集群切换模块和基于QUORUM策略的日志强同步模块.经实验验证,以上模块的实现能够提高系统整体的可用性. With the rapid development of Internet and the up-coming Big Data era, the limitation of traditional database has been emerged and enlarged. The distributed database system based on massive data storage and high concurrent accesses has become more and more popular. Alibaba group developed a distributed database system suitable for mass data storage named OceanBase, which supports two deployment modes, i. e., single cluster and multiple clusters. But the availability of multiple clusters mode is not efficient and can't satisfy the requirement of some critical applications, where it does not support the automatic switch between master cluster and slave cluster when a failure occurred and the inconsistent log is also generated during switching under multiple clusters mode. To address these problems, we analysis the high availability solutions of the traditional database, aiming at the characteristics of OceanBase architecture, combining the idea of in Raft, and then designs and implements the distributed election module based on the timestamp of logs, the automatic clusters switching module and the strong synchronization logs module based on QUORUM. The experimental results showed that the above approachescould improve the availability of the whole system.
出处 《华东师范大学学报(自然科学版)》 CAS CSCD 北大核心 2015年第5期172-184,共13页 Journal of East China Normal University(Natural Science)
基金 国家自然科学基金重点项目(61332006) 863项目(2015AA015307)
关键词 分布式数据库 高可用性 Raft一致性协议 日志同步 distributed database high availability Raft consistency protocol log synchronization
  • 相关文献

参考文献18

  • 1阳振坤.OceanBase关系数据库架构[J].华东师范大学学报(自然科学版),2014(5):141-148. 被引量:22
  • 2CHANG F,DEAN J,GHEMAWAT S,et al.Bigtable:A distributed storage system for structured data[C]//Proceedings of the 7th Conference on USENIX Symposium on Operating Systems Design and Implementation.2006:205-218.
  • 3CORBETT J C,DEAN J,EPSTEIN M,et al.Spanner:Google’s globally-distributed database[C]//Proceedings of the10th Conference on USENIX Symposium on Operating Systems Design and Implementation.2012:251-264.
  • 4DECANDIA G,HASTORUN D,JAMPANI M,et al.Dynamo:Amazon’s highly available key-value store[C]//SOSP′07:205-220.
  • 5吴勇毅.工信部力挺软件国产化政策机遇促行业大发展[EB/OL].[2014-06-05].http://it.people.com.cn/n/2014/0605/c1009-25108211.html.
  • 6OceanBase开源[EB/OL].http://alibaba.github.io/oceanbase/.
  • 7Raft consensus algorithm website[EB/OL].[2014-02-05].https://raftconsensus.github.io.
  • 8SKEEN D.A quorum-based commit protocol[C]//Proceedings of the 6th Berkeley Workshop on Distributed Data Management and Computer Networks.1982:69-80.
  • 9Oracle maximum availability architecture[EB/OL].[2014-06-01].http://www.oracle.com/technetwork/database/features/availability/maa-096107.html.
  • 10Oracle Real Application Clusters[EB/OL].[2014-05-01].http://www.oracle.com/technetwork/cn/database/options/clustering/overview/index.html.

二级参考文献36

  • 1黄剑.基于Oracle Data Guard的容灾策略设计与实现[J].科技广场,2006(11):71-73. 被引量:6
  • 2CHANG F,DEAN J,GHEMAWAT S,et al.Bigtable:a distributed storage system for structured data[C]//Proceedngs of the 7the symposium on OSDI,2006:205-218.
  • 3CORBETT J C,DEAN J,EPSTEIN M,et al.Spanner:Google's globally distributed database[J].ACM Trans Comput Syst,2013,31(3):8.
  • 4BREWER E A.Towards robust distributed systems (abstract).PODC 2000:7.
  • 5Oracle Berkeley DB:Performance Metrics and Benchmarks,[EB/OL].2006[2014-08-31].http://ww.oracle.coms/database/berkeley-db.html.
  • 6SIKKA V,F(A)RBER F,GOEL A K,et al.SAP HANA:The evolution from a modern main-memory data platform to an enterprise application platform[C].PVLDB,2013,6 (11):1184-1185.
  • 7STONEBRAKER M,WEISBERG A.The VoltDB Main Memory DBMS[J].IEEE Data Eng Bull,2014,36(2):21-27.
  • 8LAMPORT L.Time,clocks,and the ordering of events in a distributed system[J].Commun ACM (CACM),1978,21(7):558-565.
  • 9TANENBAUM A S,VAN STEEN M.Distributed Systems:Principles and Paradigms[M].2nd ed.[s.l.]:Prentice Hall,2008.
  • 10LAMPORT L.The Part-Time Parliament[M].ACM Transaction on Computer Systems,1998,16(2):133-169.

共引文献29

同被引文献79

  • 1LAMPSON B W. How to build a highly available system using consensus[C]//International Workshop on Dis- tributed Algorithms. Springer-Verlag, 1996: 1-17.
  • 2GILBERT S, LYNCH N. Brewer's conjecture and the feasibility of consistent, available, partition-tolerant web services [J]. Acm Sigact News, 2002, 33(2): 51-59.
  • 3BREWER E A. Towards robust distributed systems (abstract) [C]//Nineteenth ACM Symposium on Principles of Distributed Computing. ACM, 2007: 7.
  • 4GRAY J N. Notes on data base operating systems[C]//Advanced Course: Operating Systems. Springer-Verlag, 1978: 393-481.
  • 5MOHAN C, LINDSAY B, OBERMARCK R. Transaction management in the R* distributed database manage- ment system[J]. ACM Transactions on Database Systems, 1986, 11(4): 378-396.
  • 6LAMPSON B W, LOMET D B. A New Presumed Commit Optimization for Two Phase Com- mit[C]//International Conference on Very Large Data Bases. Morgan Kaufmann Publishers Inc, 1993: 630-640.
  • 7LAMPORT L. Paxos made simple[J]. AcmSigact News, 2001, 32(4): 1-11.
  • 8CHANDRA T D, GRIESEMER R, REDSTONE J. Paxos made live: An engineering perspective[C]//Twenty- Sixth ACM Symposium on Principles of Distributed Computing. ACM, 2007: 398-407.
  • 9LAMPORT L. The part-time parliament[J]. Acm Transactions on Computer Systems, 1998, 16(2): 133-169.
  • 10SKEEN D. Nonblocking commit protocols[C]//ACM SIGMOD Interaational Conference on Management of Data, Ann Arbor, Michigan, April 29-May. 1981: 133-142.

引证文献9

二级引证文献31

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部