期刊文献+

PANI载的孔状g-C_3N_4的界面聚合法制备与光催化性能研究

Synthesis of Porous g-C_3N_4 Loaded With Highly Dispersed PANI by Interfacial Polymerization and Its Photocatalytic Performance
下载PDF
导出
摘要 在孔状石墨型氮化碳(g-C3N4)存在下,通过苯胺单体的界面聚合成功制备了孔状g-C3N4/聚苯胺(PANI)复合催化剂。采用XRD、FTIR、SEM、TGA、UV-Vis和电化学阻抗谱等对样品的结构、形貌、性能以及可见光催化降解亚甲基蓝的催化活性进行表征。结果表明:PANI组装在孔状g-C3N4片上,此种复合结构不仅利于孔状g-C3N4对PANI链段运动的限制,提高孔状g-C3N4/PANI复合催化剂的稳定性;而且增强材料的可见光利用率、氧化能力和电子输运性能,利于可见光催化性能的改善。 Polyaniline(PANI) was successfully loaded on porous graphitic carbon nitride(porous g-C3N4) by interfacial polymerization of aniline monomers. The structure, morphology and properties of the prepared samples were characterized by XRD, FTIR, SEM, TGA, UV-Vis and Electrochemical Impedance Spectroscope(EIS). Photocatalytic degradation of methylene blue was investigated to determine the photoactivity of the catalyst. The porous g-C3N4 showed good dispersion and interfacial adhesion to PANI, which improved the photocatalytic degradation of methylene blue and thermal stability. The improved photocatalytic activity could be attributed to the improved visible light utilization, oxidation power and electron transport property.
出处 《无机材料学报》 SCIE EI CAS CSCD 北大核心 2015年第10期1018-1024,共7页 Journal of Inorganic Materials
基金 国家自然科学基金(21401001)~~
关键词 孔状g-C3N4 PANI 热稳定性 界面聚合 光催化性能 porous g-C3N4 PANI thermal stability interfacial polymerization photocatalytic performance
  • 相关文献

参考文献18

  • 1WANG X, MAEDA K, THOMAS A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater., 2009, 8(1): 76–80.
  • 2ZHAN YJ, MORI T, NIU L, et al. Non-covalent doping of graphitic carbon nitride polymer with graphene: controlled electronic structure and enhanced optoelectronic conversion. Energ. Environ. Sci., 2011, 4(11): 4517–4521.
  • 3ZHANG XD, XIE X, WANG H. Enhanced photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc., 2012, 135(1): 18–21.
  • 4WANG XC, CHEN XF, THOMAS A, et al. Metal-containing carbon nitride compounds: a new functional organic-metal hybrid material. Adv. Mater., 2009, 21(16): 1609–1612.
  • 5WANG YJ, SHI R, LIN J, et al. Enhancement of photocurrent and photocatalytic activity of ZnO hybridized with graphite-like C3N4. Energ. Environ. Sci., 2011, 4(8): 2922–2929.
  • 6ZHANG S, ZHAO L, ZENG M, et al. Hierarchical nanocomposites of polyaniline nanorods arrays on graphitic carbon nitride sheets with synergistic effect forphotocatalysis. Catal. Today, 2014, 224(4): 114–121.
  • 7GE L, HAN C, LIU J. In situ synthesis and enhanced visible light photocatalytic activities of novel PANI-g-C3N4 composite photocatalysts. J. Mater. Chem., 2012, 22(23): 11843–11850.
  • 8HU HAI-XIAN, YUAN CHANG-SONG, CHEN XIANG-YANG. Study on the thermal performance of a bicomponent high performance epoxy resin for advanced composites. Journal of Anhui University of Science and Technology (Natural Science), 2012, 34(1): 39–42.
  • 9YU Q, LI X, ZHANG M. One-step fabrication and high photocatalytic activity of porous graphitic carbon nitride synthesised via direct polymerisation of dicyandiamide without templates. Micro Nano Lett., 2014, 9(1): 1–5.
  • 10POUGET J P, JOZEFOWICZ M E, EPSTEIN A J, et al. X-ray structure of polyaniline. Macromolecules, 1991, 24(3): 779–789.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部