期刊文献+

基于改进DPSO算法的并行测试任务优化调度研究 被引量:1

Research on Optimization of Task Scheduling for Parallel Test Based on Improved DPSO Algorithm
下载PDF
导出
摘要 并行测试以减少测试时间和降低测试成本的强大优势,已成为当前自动测试系统发展的方向;针对并行自动测试过程中,测试任务调度复杂,难以优化的问题,以PSO算法为基础,通过对问题空间编码的重新定义,并运用交叉、变异算子给出了新的粒子位置的更新公式,提出了一种改进后的DPSO算法;依据并行测试完成时间极限定理,给出了并行测试任务调度的目标函数与约束条件;以某雷达电子装备并行测试系统中三块电路板并行测试为例,对改进的DPSO算法进行了仿真验证,得到了最优调度测试序列;结果表明:与遗传算法相比,改进后的DPSO算法迭代次数更少,寻优性能更好,适用于工程应用。 The parallel test has become the developmental trend of Automatic Test System with great strength in reducing test time and test cost. Aimed at the problems that task scheduling is complex and task optimization is difficulty in parallel automatic test, a improved Dis- crete Particle Swarm Optimization (DPSO) algorithm is proposed, in which problem space coding is redefined and particle position update for mula is rebuilt using crossover and mutation operator. And then the objective function and constraint condition of task scheduling for parallel test are given, according to the limit completion time theorem of parallel test. In order to validate the performance of the improved DPSO al- gorithm, a parallel test simulation experiment for three pieces of circuit board is made by parallel test system of certain radar electronic equipment, and the optimal task scheduling is got. The results show that compared with genetic algorithm the improved DPSO algorithm has less iterations, higher efficiency and better optimal performance, and is more suitable for engineering application.
出处 《计算机测量与控制》 2015年第10期3338-3340,3363,共4页 Computer Measurement &Control
基金 "泰山学者"建设工程专项经费资助
关键词 并行测试 任务调度 最优序列 改进的离散粒子群优化算法 parallel test task scheduling optimize sequence improved discrete particle swarm optimization (DPSO) algorithm
  • 相关文献

参考文献11

  • 1杜里,张其善.电子装备自动测试系统发展综述[J].计算机测量与控制,2009,17(6):1019-1021. 被引量:61
  • 2Wang L, Fang J Y, Gao C J. Parallel test tasks scheduling on multi -core platform EA~. IEEE Autotestcon 2008 Proceedings EC~. America: IEEEpress, 2008 (9): 448-451.
  • 3卓家靖,孟晨,方丹.并行自动测试系统硬件结构研究[J].计算机测量与控制,2009,17(5):820-821. 被引量:9
  • 4Carl H D, Hoover R. Optimizing test systems for operational test benefits using parallel test capable instruments EA~. IEEE Au- totestcon 2008 Proceedings EC~. America: IEEE press. 2008 (9) : 443 - 447.
  • 5Li W H, Wang Y P, Wang X H. Implementing parallel test in tra- ditional serial framework ATS EA~. Proceeding of 10th Interna- tional Conference on Electronic Measurement ~ Instruments [C]. Chengdu, IEEE press, 2011 (8); 143-146.
  • 6. Xia R, Xiao M Q, Cheng J J. Parallel TPS design and application based on software architecture components and patterns [A~. IEEE Autotestcon 2007 Systems Readiness Technology Conference I-c~. America: IEEE press, 2007 (9): 213-215.
  • 7Kennedy J, Eberhartr C. Particle swarm optimization [-A~. Pro- ceedings of the Fourth IEEE International Conference on NeuralNetworks [C]. Perth, Australia: IEEE Press, 1995 (4): 1942 - 1948.
  • 8李昕,沈士团,路辉.基于图染色理论的并行测试任务调度算法[J].北京航空航天大学学报,2007,33(9):1068-1071. 被引量:13
  • 9郭文忠,陈国龙.离散粒子群优化算法及其应用[M].北京:清华大学出版社,2012.
  • 10陈晶,潘全科.求解独立任务调度问题的改进粒子群算法[J].微电子学与计算机,2009,26(1):151-154. 被引量:5

二级参考文献27

共引文献103

同被引文献6

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部