期刊文献+

固态T/R组件冷板扩展热阻分析与优化准则 被引量:2

Analysis and Optimization of Spreading Thermal Resistance for Solid-state T/R Module Cold Plate
下载PDF
导出
摘要 电子设备的功率器件和散热冷板之间由于存在面积差异,产生扩展热阻,在高热流密度条件下(>100 W/cm2)温升效应尤为明显。文中通过对固态T/R组件冷板扩展热阻的简化近似解的分析计算,研究了冷板的导热系数、厚度、半径、对流换热系数等参数扩展热阻的影响规律,发现冷板存在厚度和半径的工程最优值使得扩展热阻或总热阻最小,建立了相应的尺寸优化准则,然后通过计算流体力学(computiatonal fluid dynamics,CFD)数值试验进行了计算验证,结果表明CFD解和简化解结果一致,研究结论可用于指导冷板或热扩展板的工程设计。 The spreading thermal resistance caused by the area difference between the electronic device and the cooling plate is sig- nificantly high when the heat flux density is higher than 100 W/em2. In this paper, the thermal spreading resistance of the solid- state T/R module cold plate was modeled and simulated with a simplified analytical method, and then the effect of heat transfer eo- efficient, thickness, radius, heat transfer coefficient of the cold plate was studied. The optimal combination of parameters, such as, the radius and the thickness was obtained, with which the spreading thermal resistance and the total heat transfer resistance was minimum. Finally, the present model was validated with a CFD simulation, with a reasonable match obtained, which proved the present work as a solid reference of relevant applications
作者 钱吉裕 魏涛
出处 《现代雷达》 CSCD 北大核心 2015年第10期77-81,共5页 Modern Radar
关键词 固态T/R组件 扩展热阻 冷板 简化解 工程最优值 solid-state T/R module thermal spreading resistance cold plate simple approximation solution optimization solution
  • 相关文献

参考文献11

  • 1Brookner.相控阵和雷达技术的突破(英文)[J].现代雷达,2006,28(10):1-4. 被引量:6
  • 2於洪标.X波段T/R组件功率放大器芯片的热设计[J].现代雷达,2010,32(4):74-78. 被引量:11
  • 3Yovanovich M M. Thermal constriction resistance of contacts on a half-space: Integral formulation [ C ]// Progress in As- tronautics and Aeronautics: Radiative Transfer and Thermal Control. New York: AIAA Press, 1976:397-418.
  • 4Cooper M G, Mikic B B, Yovanovich M M. Thermal contact conductance [ J ]. International Journal of Heat and Mass Transfer, 1969, 12( 3 ) :279-300.
  • 5Kennedy D P. Spreading resistance in cylindrical semicon- ductor devices [ J]. Journal of Applied Physics, 1960, 31 ( 8 ) : 1490-1497.
  • 6Ellison G N. Maximum thermal spreading resistance for rec- tangular sources and plates with nonunity aspect ratios [ J ]. IEEE Transactions on Components and Packaging Technolo- gies,2003, 26(2) :439-454.
  • 7Karmalkar S, Mohan P V, Nair H P, et al. Compact models of spreading resistances for electrical/thermal design of de- vices and ics [ J ]. IEEE Transactions on Electron Devices, 2007, 54(7) :1734-1743.
  • 8Pawlik M. Spreading resistance: a quantitative tool for process control and development [ J ]. Vacuum Science and Technology B: Microelectronics and Nanometer Structures, 1992, 10( 1 ) : 388-396.
  • 9Sadeghi E, Bahrami M, Djilali N. Analytic solution of thermal spreading resistance: generalization to arbitrary-shape heat sources on a hag-space[ C]//ASME 2008 Summer Heat trans- fer Conference. Jacksonville:[s. n. ], 2008: 10-14.
  • 10Muzychka Y, Yovanovich M, Culham J. Thermal spreading resistances in rectangular flux channels part 1 : Geometric equivalences [ C ]//36th AIAA Thermophysics Conference. Orlando: AIAA Press, 2003: 23-26.

共引文献15

同被引文献9

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部