期刊文献+

一类四元零相关区非周期互补序列集构造法 被引量:6

A Construction of Quaternary Aperiodic Complementary Sequence Sets with Zero Correlation Zone
下载PDF
导出
摘要 零相关区非周期互补序列集在多载波码分多址通信系统中有着重要应用.已有的四元零相关区非周期互补序列集构造方法都是基于二元或四元零相关区互补序列集,得到的序列集参数受到初始互补序列集参数的限制.该文给出了一种构造法,利用四元正交序列集来构造四元非周期互补序列集.本文方法得到的序列集参数达到理论界限,并且零相关区长度可以灵活设定以满足不同的应用场合.另外给出了两类基于二元正交矩阵的四元正交序列集的构造方法,得到的四元正交序列集可以用于构造四元零相关区非周期互补序列集.二元正交矩阵存在数目很多,因此本文方法可以为多载波码分多址系统提供大量四元非周期互补序列集. Zero correlation zone (ZCZ) aperiodic complementary sequence sets (ZACS) are widely used in multi-carders code division multiple access (CDMA) communication systems. The known constructions of quaternary ZACSs are all based on bi- nary or quaternary ZACSs, and the parameters of the quaternary ZACSs constructed by these methods are restricted by the parame- ters of initial ZACSs. This paper proposed a construction of quaternary ZACS based on quaternary orthogonal sequence sets. The quaternary ZACSs constructed in this paper are optimal with respect to the bound, and the length of ZCZ can be flexibly chosen for many applications. Moreover, two constructions of quaternary orthogonal sequence sets are proposed based on binary orthogonal ma- trices. Since there are a large number of available binary orthogonal matrices, the proposed construction can produce a lot of quater- nary ZACSs for multi-carriers CDMA systems.
出处 《电子学报》 EI CAS CSCD 北大核心 2015年第9期1800-1804,共5页 Acta Electronica Sinica
基金 国家自然科学基金(No.61172094 No.61501395) 河北省自然科学基金(No.F2014203059) 河北省高等学校科学技术研究项目(No.QN2014027 No.ZD2014024) 燕山大学博士基金(No.B788) 燕山大学青年教师自主研究计划项目(No.13LGB018)
关键词 四元序列 非周期互补序列 零相关区 正交序列 quaternary sequence aperiodic complementary sequences zero correlation zone (ZCZ) orthogonal sequences
  • 相关文献

参考文献16

  • 1Tseng C C, Liu C L. Complementary sets of sequences [ J ]. IEEE Transactions on Information Theory, 1972, IT- 18 (5) : 644 - 652.
  • 2H H Chen, J F Yeh, N Seuhiro, A multi-carrier CDMA archi- tecture based on orthogonal complementary codes for new gen- erations of wideband wireless communications[ J]. IEEE Com- munication Magzine, 2001,39(10) : 126 - 135.
  • 3Meng Wei-xiao, Sun Si-yue, Chert Hsiao-hwa, et al. Multi-user interference cancellation in complementary coded CDMA with diversity gain [ J ]. IEEE Wireless Communications Letters, 2013,2(3) :303 - 306.
  • 4Liu Zi-long, Li Ying, Guan Yong-liang. New constructions on general QAM golay complerentary sequences. IEEE Trmasa- tions on Information Theory, 20 13,59 ( 11 ) : 7684 - 7692.
  • 5Liu Zi-long, Guan Yong-liang,Mow Wai-ho. A lighter correla- tion lower bound for quasi-complementary sequence sets [J ]. 1EEF. Transactions on Information Theory, 2014,60 ( 1 ) : 388 - 396.
  • 6Tu Yi-feng, Fan Ping-zhi, Hao Li, et al.A simple method for generating optimal Z-periodic complementary sequence set based on phase shift[J]. IEEE Signal Processing Letters,2010, 17(10) : 891 - 893.
  • 7Fan Ping-zhi, Yuan Wei-na, Tu Yi-feng. Z-complementary bi- nary sequences[ J]. IEEE Signal Processing Letters, 2007, 14 (8) :509 - 512.
  • 8Feng Li-fang,Fan Ping-zhi,Zhou Xian-yang. Lower bounds on correlation of Z-complementary code sets[J]. Wireless Personal Communications,2013, (2013) : 1475 - 1488.
  • 9Liu Zi-long,Parampalli Udaya,Guan Yongliang. On even-peri- odic binary z-complementary pairs with large ZCZs [ J]. IE EE Signal Procession Letters,2014,21 (3) :284 - 287.
  • 10Li Yu-bo,Xu Claeng-qian,Jing Nan,Liu Kai.Censtructis of z- periodic complertntary sequence set with flexible flock size[J]. IEFE. cations Letters,2014,18(2) :201 - 204.

二级参考文献27

  • 1Udaya P, Tang X H. Low correlation zone sequences from in- terleaved conslruction [ J ]. IEICE Trans Fundamentals, 2010, E93-A( 11 ) :2220- 2226.
  • 2Gong G, Golomb S W, Song H Y. A note on low correlation zone signal sets [ J]. IEEF. Trans Inf Theory, 2007,53(7) :2575 - 2581.
  • 3Tang X H, Udaya P. On the noncyclic property of Sylvester Hadamard matrices [ J]. IEEE. Trans Inf Theory,2010,56(9) : 4653 - 4658.
  • 4Xu C Q, Li Y B, Liu K, et al. Construction of optimal low cor- relation zone sequence sets based on DFT matrices [ J]. IEICE Trans Fundamentals, 2012, E95-A(10) : 1796 - 1800.
  • 5Jang J W, No J S, Chung H, et al. New sets of optimal p-ary low-correlation zone sequences [ J]. IEEE Trans Inf Theory, 2007,53(2) :815 - 821.
  • 6Chung J H, Yang K. New design of quaternary low-correlation zone sequence sets and quaternary hadamard matrices [ J ]. 1EEE Trans Inf Theory,2008,54(8) :3733 - 3737.
  • 7Kim S H,Jang J W.New constructions of quaternary low cor- relation zone sequences [ J ]. IEEE. Trans Inf Theory, 2005, 51 (4) : 1469 - 1477.
  • 8Ozbudak F, Saygl E,Saygl Z.A new class of quaternary sequence sets[ J ]. Des Codes Cryptogr, 2012, 62 ( 2 ) : 189 - 198.
  • 9Tang X H,Fan P Z. Lower bounds on correlation of spreading sequence set with low and zero correlation zone [ J]. Elect Letters,2000,36:551 - 552.
  • 10J Jebwab,C Mitchell. Constructing new perfect binary arrays[J].Electronics Letters,1988,(11):650-652.doi:10.1049/el:19880440.

共引文献3

同被引文献18

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部