期刊文献+

Stieltjes函数生成的广义Loewner矩阵的秩不变性

On Rank Invariance of Generalized Loewner Matrices Generated by Stieltjes Function
下载PDF
导出
摘要 研究由Stieltjes函数生成的两类广义Loewner矩阵的秩不变性,证明了由同一Stieltjes函数生成的第一类同型的广义Loewner矩阵的秩是相等的,而生成的第二类同型的广义Loewner矩阵的秩相等或者相差1. In this paper we study the statements on rank invariance of generalized Loewner matrices of two types generated by the values of a given Stieltjes function.We show that the ranks of such matrices of the first type of the same size are equal,while the ranks of such matrices of the second type with the same size are either equal or differ with difference one.
出处 《数学物理学报(A辑)》 CSCD 北大核心 2015年第5期947-955,共9页 Acta Mathematica Scientia
基金 国家自然科学基金(11071017 11271045) 中央高校基本科研业务费资助
关键词 Stieltjes函数 广义Loewner矩阵 HANKEL矩阵 秩不变 Stieltjes矩量问题 Stieltjes function Generalized Loewner matrix Hankel matrix Rank invariance Stieltjes moment problem
  • 相关文献

参考文献13

  • 1Akhiezer N I. The Classical Moment Problem and Some Related Questions in Analysis. London: Oliver and Boyd, 1965.
  • 2Chen G N, Li X Q. The Nevanlinna-Pick interpolation problems and the power moment problems for matrix-valued functions. Linear Algebra Appl, 1999, 288:123-148.
  • 3Fritzsche B, Kirstein B, Lasarow A. On rank invariance of Schwarz-Pick-Potapov block matrices of matrix- valued Caratheodory function. Operator Theory: Advances and Applications, 2002, 135:161-181.
  • 4Fritzsche B, Kirstein B, Lasarow A. On rank invariance of generalized Schwarz-Pick-Potapov block matrices of matrix-valued Caratheodory function. Linear Algebra Appl, 2006, 413:36-58.
  • 5Fritzsche B, Kirstein B, Lasarow A. On rank invariance of Schwarz-Pick-Potapov block matrices of matrical Schur function. Integral Equation Operator Theory, 2004, 48:305-330.
  • 6Fritzsche B, Kirstein B, Lasarow A. On rank invariance of moment matrices of nonnegative Hermitian- valued Borel measures on the unit circle. Math Nachr, 2004, 263/264:103-132.
  • 7Hu Y J, Chen G N. A unified treatment for the matrix Stieltjes moment problem. Linear Algebra Appl, 2004, 380:227-239.
  • 8Hu Y J, Chen G N. On rank variation of block matrices generated by Nevanlinna matrix functions. Math Nachr, 2009, 282:611-621.
  • 9贺勤,徐清舟,陈公宁.矩阵值Caratheodory函数广义块Pick矩阵的秩不变性[J].数学物理学报(A辑),2012,32(1):103-112. 被引量:1
  • 10Krein M G, Nudel'man A A. The Markov Moment Problem and Extremal Problems, Trans Math Mono- graphs 50. Providence: American Math Soc, 1977.

二级参考文献4

  • 1Lasarow A. On rank invariance of generalized Schwarz-Pick-Potapov block matrices of matrix-valued Caratheodory functions. Linear Algebra Appl, 2006, 413:36-58.
  • 2Chen Gongning, Hu Yongjian. On the multiple Nevanlinna-Pick matrix interpolation in class Cp and matricial Caratheodory matrix coefficient problem. Linear Algebra Appl, 1998, 283:179-203.
  • 3Ball J A, Gohberg I, Rodman L. Interpolation of Rational Matrix Functions: Operator Theory. Basel." Birkhauser, 1990.
  • 4Kovalishina I V. Analytic theory of a class of interpolation problems. Math USSR Izv, 1984, 22(3): 419-463.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部