期刊文献+

以EP300为中心的胰腺癌相关蛋白质相互作用网络特征分析 被引量:2

Analysis of protein interaction networks related to core protein EP300 of pancreatic cancer
下载PDF
导出
摘要 目的 :查找生物信息平台的胰腺癌相关基因、蛋白质调控网络以及生物通道功能注释信息数据,建立胰腺癌转移相关蛋白质相互作用网络。方法:筛选GEO数据库中获取的3组基因表达谱芯片(编号GSE22780、GSE22973、GSE14245),分为正常组和胰腺癌组,利用倍数变化分析得到胰腺癌阶段的差异表达基因集,再将基因集投射到蛋白质相互作用数据,得到相应的蛋白质网络,取相对独立、相互作用较集中且与转移密切相关的蛋白质子网络进行功能富集分析。结果:建立胰腺癌发生发展过程中的蛋白质相互作用网络,分析与转移密切相关的蛋白质子网络,得到以EP300为中心的胰腺癌相关蛋白质相互作用网络。结论:本研究利用生物信息平台的胰腺癌相关基因和蛋白质数据,建立以EP300为中心的胰腺癌相关蛋白质相互作用网络,为胰腺癌研究提供信息,可用于寻找胰腺癌的诊治靶点。 Objective To analyze large amounts of data including the genes, proteins networks and the function of pathway from Affymetrix Human Genome U133 Plus 2.0 generated by pancreatic cancer gene chips and to establish protein interaction networks related to metastatic pancreatic cancer. Methods Fold change was used to analyses 3 chips (GSE22780, GSE22973, GSE14245) from gene expression omnibus database with normal group and pancreatic cancer group to find the genes expressed differentially during pancreatic cancer phase. Then the genes which expressed differen- tially were projected to the proteins to establish protein interaction networks. Finally functional annotation bioinformatics microarray analysis was performed to those relatively independent and interactive networks which were highly related to metastasis. Results Protein interaction networks related to metastasis of pancreatic cancer was established. Using these networks, EP300 was found to be core protein of the protein interaction networks related to of pancreatic cancer. Conclusions The gene and protein data related to pancreatic cancer were collected in this study by bioinformatics methods. The protein interaction networks related pancreatic cancer has been established. The core protein EP300 was found in the networks and could be used as a new clue in future research.
出处 《外科理论与实践》 2015年第5期429-433,共5页 Journal of Surgery Concepts & Practice
基金 国家自然科学基金(81172326) 上海慈善癌症研究基金
关键词 生物信息学 数据库 蛋白质组学 肿瘤转移 胰腺癌 Bioinformatics method Database Proteomics Metastasis Pancreatic cancer
  • 相关文献

参考文献19

  • 1张思维,陈万青,郑荣寿,李霓,曾红梅,李光琳,魏文强,赵平.2003~2007年中国癌症死亡分析[J].中国肿瘤,2012,21(3):171-178. 被引量:99
  • 2Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012[J]. CA Cancer J Clin,2012,62(1):10-29.
  • 3Roos DS. Computational biology, bioinformatics--trying to swim in a sea of data[J]. Science,2001,291(5507):1260- 1261.
  • 4Gayther SA, Barley SJ, Linger L, et al. Mutations trun- cating the EP300 acetylase in human cancers[J]. Nat Genet,2000,24(3):300-303.
  • 5Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics[J]. Genome Biol,2004,5(10):RS0.
  • 6Parrish RS, Spencer HJ 3rd. Effect of normalization on significance testing for oligonucleotide microarrays[J]. J Biopharm Stat,2004,14(3):575-589.
  • 7Gautier L, Cope L, Bolstad BM, et al. Affy--analysis of Affymetrix GeneChip data at the probe level[J]. Bioinfor- matics,2004,20(3):307-315.
  • 8Tusher VG, Tibshirani R, Chu G. Significance analysis of microarrays applied to the ionizing radiation response[J]. Proc Natl Acad Sci U S A,2001,98(9):5116-5121.
  • 9Keshava Prasad TS, Goel R, Kandasamy K, et al. Human Protein Reference Database-2009 update[J]. Nucleic Acids Res,2009,37:D767-D772.
  • 10Shannon P, Markiel A, Ozier O, et al. Cytoscape: a soft- ware environment for integrated models of biomolecular interaction networks[J]. Genome Res,2003,13(ll):2498- 2504.

二级参考文献5

  • 1李连弟,陈育德.中国恶性肿瘤死亡调查研究(1990-1992)[M].北京:人民卫生出版社.2008.
  • 2陈竺.全国第三次死因回顾抽样调查报告[M].北京:中国协和医科大学出版社,2008:11-12.
  • 3Ferlay J,Shin HR,Bray F,et al.Estimates of worldwide burden of cancer in 2008:GLOBOCAN 2008[J].Int J Cancer,2010,127(12):2893-2917.
  • 4卫生部全国肿瘤防治研究办公室.中国恶性肿瘤死亡调查研究[M].北京:人民卫生出版社,1979.
  • 5国家统计局人口和就业统计局.中国人口和就业统计年鉴2008[M].北京:中国统计出版社,2008.

共引文献98

同被引文献48

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部