期刊文献+

减阻型纳米流体在圆管内的流动和换热特性 被引量:5

Heat transfer and flow resistance characteristics with drag reducing nanofluids in circular tube
下载PDF
导出
摘要 实验测定了在Reynolds数4000~16000范围内,质量分数0~0.5%的石墨、多壁碳纳米管、Al2O3、Cu、Al、Fe2O3、Zn纳米粒子加入到100~400 mg·kg-1浓度的十六烷基三甲基氯化铵(CTAC)减阻剂中所制备的减阻型纳米流体的摩擦阻力系数和对流传热系数。结果表明:在 CTAC 中加入水杨酸钠(NaSal)与去离子水所配制的减阻剂具有一定的稳定性和很强的减阻特性,当减阻剂浓度为200 mg·kg-1时其减阻特性最优。石墨纳米粒子在增强对流换热和减少流动阻力方面具有较佳的综合性能,当石墨纳米颗粒质量分数为0.4%时,其综合性能因子K是去离子水的5倍。最后给出了减阻型石墨纳米流体在圆管内的流动阻力和换热关联式,其计算值和实验值吻合良好。 Drag reducing nanofluids can reduce flow resistance and enhance fluid convective heat transfer. In this study, the convective heat transfer coefficient and flow resistance coefficient were determined experimentally at the Reynolds number of 4000—16000, with 0—0.5% mass fraction of graphite multi-walled carbon nanotubes, A12O3, Cu, Al, Fe2O3, and Zn nanoparticles added into a concentration of 100—400 mg·kg-1 cetyl trimethyl ammonium chloride (CTAC) drag reducing fluid. The ratio of the two fluids and preparation method were examined and the overall performance on convective heat transfer and flow characteristics was evaluated. The results show that the drag reducing fluid forming by sodium salicylate, CTAC and deionized water presents certain stability and significant drag reduction characteristic. At the drag reducing fluid concentration of 200 mg·kg-1, the drag reduction performance is the best. Graphite nanoparticles give better overall performance in enhancing convective heat transfer and reducing flow resistance among the nanoparticles. At 0.4%(mass) of graphite nanoparticles, the overall performance factorK is five times that with deionized water, presenting the best heat transfer and drag reduction characteristics, so it has good application prospects. Finally, a correlation is obtained by fitting the heat transfer and flow resistance of the drag reducing graphite nanofluid in circular tube, which is in good agreement with the experimental values.
出处 《化工学报》 EI CAS CSCD 北大核心 2015年第11期4401-4411,共11页 CIESC Journal
基金 教育部新世纪优秀人才支持计划项目(NCET-12-0727)~~
关键词 纳米流体 减阻流体 稳定性 湍流 热传导 流动阻力 nanofluids drag reducing fluid stability turbulent flow heat conduction flow resistance
  • 相关文献

参考文献31

  • 1Choi S U S, Eastman J A. Enhancing thermal conductivity of fluids with nanoparticles in developments and applications of non-Newtonian flows// ASME International Mechanical Engineering Congress and Exposition [C]. New York, 1995, 231: 99-105.
  • 2李强,宣益民.铜-水纳米流体流动与对流换热特性[J].中国科学(E辑),2002,32(3):331-337. 被引量:26
  • 3李强,宣益民.纳米流体对流换热的实验研究[J].工程热物理学报,2002,23(6):721-723. 被引量:31
  • 4钟勋,俞小莉,吴俊.氧化铝有机纳米流体的流动传热基础特性[J].化工学报,2009,60(1):35-41. 被引量:11
  • 5Wang Peng (王鹏), Bai Minli (白敏丽), Lü Jizu (吕继组), Hu Chengzhi (胡成志), Wang Yuyan (王玉艳). Turbulent pipe flow characteristics within nanofluids [J].化工学报, 2014, 65(S1): 17-26.
  • 6Halelfadl S, Estellé P, Maré T. Heat transfer properties of aqueous carbon nanotubes nanofluids in coaxial heat exchanger under laminar regime [J]. Experimental Thermal and Fluid Science, 2014, 55: 174-180.
  • 7Rabienataj Darzi A A, Farhadi M, Sedighi K. Heat transfer and flow characteristics of Al2O3-water nanofluid in a double tube heat exchanger [J]. International Communications in Heat and Mass Transfer, 2013, 47: 105-112.
  • 8Utomo A T, Haghighi E B, Zavareh A I T, Ghanbarpourgeravi M, Poth H, Khodabandeh R, Palm B, Pacek A W. The effect of nanoparticles on laminar heat transfer in a horizontal tube [J]. International Journal of Heat and Mass Transfer, 2014, 69: 77-91.
  • 9Toms B A. Some observation on the flow of linear polymer solutions through straight tubes at large Reynolds numbers// Proceedings of the First International Congress Rheology [C]. Amsterdam, North Holland, 1949: 135-141.
  • 10Ceng Renhai (岑仁海). Cetyl trimethyl ammonium chloride of drag reduction experiment research [D]. Harbin: Harbin Institute of Technology, 2009.

二级参考文献54

  • 1程波,杜垲,张小松,牛晓峰.氨水-纳米炭黑纳米流体的稳定性[J].化工学报,2008,59(S2):49-52. 被引量:8
  • 2谭秉仁,张金兴.汽油发动机的高温冷却[J].上海交通大学学报,1993,27(3):17-24. 被引量:3
  • 3陈波,夏庆中,V.T.Lebedev.富勒烯-PVP聚合物链团结构的中子小角散射实验研究[J].物理学报,2005,54(6):2821-2825. 被引量:6
  • 4彭小飞,俞小莉,夏立峰,钟勋.纳米流体悬浮稳定性影响因素[J].浙江大学学报(工学版),2007,41(4):577-580. 被引量:35
  • 5Keblinski P, Eastman J A, Cahill D G. Nanofluids for thermal transport. Materials Today, 2005, 8(6):36-44
  • 6Xuan Yimin, Li Qiang. Heat transfer enhancement of nanofluids. International Journal of Heat and Fluid Flow, 2000, 21(1):58-64
  • 7Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles//Siginer D A, Wang H P. Developments and Application of Non-Newtonian Flows. ASME FED-231.New York: ASME, 1995:99 -105
  • 8Lee S, Choi S U S, Eastman J A. Measuring thermal conductivity of fluids containing oxide nanoparticles. Journal of Heat Transfer, 1999, 121:280- 299
  • 9Xie H, Wang J, Xi T, Liu Y, Ai F, Wu Q. Thermal conductivity enhancement of suspensions containing nanosized alumina particles, J. Applied Physics, 2002, 9(4): 4568-4572
  • 10Lee S, Choi S U S, Application of metallic nartoparticle advanced cooling systems//International Mechanical Engineering Congress and Exhibition. Atlanta USA, 1996

共引文献82

同被引文献85

引证文献5

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部